August 2010
Volume 10, Issue 7
Vision Sciences Society Annual Meeting Abstract  |   August 2010
The perception of 3D shape from contour textures
Author Affiliations
  • Eric Egan
    Department of Psychology, The Ohio State University
  • James Todd
    Department of Psychology, The Ohio State University
Journal of Vision August 2010, Vol.10, 66. doi:10.1167/10.7.66
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Eric Egan, James Todd; The perception of 3D shape from contour textures. Journal of Vision 2010;10(7):66. doi: 10.1167/10.7.66.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

A new computational analysis is described for estimating the 3D shapes of curved surfaces with contour textures. This model assumes that contours on a surface are stacked in depth so that the depth interval between any two points is optically specified by the number of contours by which they are separated. Whenever this assumption is violated, the model makes specific predictions about how the apparent shape of a surface should be distorted. Two psychophysical experiments were performed in an effort to compare the model predictions with the perceptual judgments of human observers. Stimuli consisted of sinusoidally corrugated surfaces with contours that were oriented in different directions. In Experiment 1 images of textured surfaces were presented together with a set of red and yellow dots that could be moved along a single horizontal scan line with a handheld mouse. Observers were instructed to mark each local depth minimum on the scan line with a red dot and each local depth maximum with a yellow dot. In Experiment 2 horizontal scan lines on images were marked by a row of five to eight equally spaced red dots. An identical row of dots was presented against a blank background on a separate monitor, each of which could be moved perpendicularly with a handheld mouse. Observers were instructed to adjust the dots on the second monitor in order to match the apparent surface profile in depth along the designated scan line. The results of both experiments revealed that observers' shape judgments are close to veridical when surface contours are stacked in depth, but that contour patterns that violate this constraint produce systematic distortions in the apparent shapes of surfaces that are quite consistent with our proposed model.

Egan, E. Todd, J. (2010). The perception of 3D shape from contour textures [Abstract]. Journal of Vision, 10(7):66, 66a,, doi:10.1167/10.7.66. [CrossRef]
 This research was supported by a grant from NSF (BCS-0546107).

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.