Abstract
Functional magnetic resonance imaging (fMRI) studies using a multiple object permanence tracking task (MOPT; Saiki, 2003) or a multiple object tracking task have reported the involvement of the frontoparietal network and inferior precentral sulcus (infPreCS) in the monitoring of location or feature-location binding. In general, many objects have multiple features; therefore, coherent object representation requires monitoring multiple features-location binding. To investigate whether the enhanced activities in the previously reported neural network or activities in additional regions contribute to the monitoring of multiple features-location binding, we used event-related fMRI with an MOPT paradigm and compared brain activities among different tasks using the same visual information. Visual objects were defined by 4 sets of a tilted black bar embedded in a colored circle. We prepared 3 change types: color (2 colored circles were replaced with each other), orientation (2 tilted bars were replaced with each other), and conjunction (2 colored circles and tilted bars were replaced with each other). Depending on the change type to be monitored, we prepared 2 types of tasks: single feature-location binding (monitoring only single feature-location binding) and triple conjunction tasks (monitoring the binding of 2 features and location). The former group consisted of color (to detect either color or conjunction change) and orientation (to detect either orientation or conjunction change) tasks, whereas the latter was the conjunction task (to detect only conjunction change). Behavioral data showed no significant difference between tasks. In the search for regions showing selective activation in monitoring of triple conjunction, we identified a network comprised of the superior parietal lobule, superior frontal gyrus, middle frontal gyrus, and infPreCS. In the monitoring of triple conjunction, infPreCS cooperated with subregions of the frontoparietal network, suggesting the contribution of enhanced activities in the neural network reported in previous studies in the monitoring of object representation.
This work was supported by KAKENHI (19500226, 19730464, and 21300103).