September 2011
Volume 11, Issue 11
Vision Sciences Society Annual Meeting Abstract  |   September 2011
A neural population model for pattern detection
Author Affiliations
  • Robbe Goris
    Laboratory of Experimental Psychology, University of Leuven (K.U.Leuven), Belgium
    Center for Neural Science, NYU, USA
  • Tom Putzeys
    Laboratory of Experimental Psychology, University of Leuven (K.U.Leuven), Belgium
  • Johan Wagemans
    Laboratory of Experimental Psychology, University of Leuven (K.U.Leuven), Belgium
  • Felix Wichmann
    FG Modellierung Kognitiver Prozesse, Technische Universität Berlin, Germany
    Bernstein Center for Computational Neuroscience, USA
Journal of Vision September 2011, Vol.11, 1165. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Robbe Goris, Tom Putzeys, Johan Wagemans, Felix Wichmann; A neural population model for pattern detection. Journal of Vision 2011;11(11):1165.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Behavioural pattern detection experiments have greatly advanced our understanding of the computations performed by the early visual system to extract information from the retinal image. Up to now, psychophysical near-threshold measurements have been taken to suggest that observers select the maximum response from a bank of parallel linear visual filters, each sensitive to a specific image resolution, to perform detection. However, spatial-frequency tuned neurons in primary visual cortex are neither linear, nor independent and ample evidence emphasizes that perceptual decisions are mediated by pooling responses of multiple neurons. Why then does the aforementioned model do so well in explaining pattern detection? One possibility is that near-threshold stimuli are too weak to drive the early visual system's nonlinearities and activate only few sensory neurons. Alternatively, the ability of this theory to account for threshold experiments modelled in isolation belies the fact that its assumptions about pattern detection are inherently wrong. Here, we challenge both a linear channel model (LCM) and a neural population model (NPM) to fit a broad range of well-known and robust psychophysical pattern detection results, using a single set of parameters. In the LCM, psychophysical decisions reflect maximum-output decoding of linear and independent spatial frequency channels. In the NPM, perceptual choice behaviour is driven by maximum likelihood decoding of a population of normalized spatial-frequency tuned units resembling V1-neurons. We find that the LCM fails to satisfactorily explain pattern detection. The NPM, on the other hand, can fully account for pattern detectability as investigated in behavioural summation, adaptation and uncertainty experiments. This work thus offers a new theoretical interpretation for the vast psychophysical literature on pattern detection in which both normalization and maximum-likelihood decoding turn out to be crucial.


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.