September 2011
Volume 11, Issue 11
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2011
Retinal information influencing heading perception during rotation
Author Affiliations
  • Diederick C. Niehorster
    Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong, China SAR
  • Li Li
    Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong, China SAR
Journal of Vision September 2011, Vol.11, 906. doi:https://doi.org/10.1167/11.11.906
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Diederick C. Niehorster, Li Li; Retinal information influencing heading perception during rotation. Journal of Vision 2011;11(11):906. https://doi.org/10.1167/11.11.906.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

It has been reported that humans can accurately perceive heading during simulated eye rotation using information from optic flow alone. Here we investigated what roles spatial frequency content, surface structure, foreground motion, and expansion information play in heading perception during rotation. The display (110°H × 94°V) simulated an observer walking on a straight path over a ground plane (depth range: 1.4–50 m) at 2 m/s while fixating a target off to one side (mean R/T ratios: ±0.8, ±1.6, ±2.4) under six display conditions, in which (1) 50 random dots were uniformly distributed on the ground plane (2) the same number of dots was placed at each distance in depth to increase foreground motion (3) the dots were uniformly distributed on the image plane to remove static depth cues (4) the ground plane was replaced with the lower half of a 3D random-dot cloud that had the same velocity profile as (3) to remove the surface structure defined by dot motion in (3) (5) a ground similar to (3) but consisting of discs that expanded during the trial; and (6) a textured ground having the same spatial frequency power spectrum as (5). At the end of each 1s trial, observers used the mouse to indicate their perceived heading along a horizontal line in the center of the display. Mean heading bias was significantly smaller for (6) than for (5), indicating that spatial frequency content is not crucial for accurate heading perception during rotation. Mean heading bias was similar for (3), (4), and (5), indicating that expansion and surface structure information do not affect heading perception. Lastly, mean heading bias was borderline significantly smaller for (2) than (1), revealing that foreground motion plays a modest role in accurate heading perception. We conclude that dense motion parallax information is most important for accurate heading perception during rotation.

Supported by: Hong Kong Research Grant Council, HKU 7478//08H. 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×