December 2011
Volume 11, Issue 15
OSA Fall Vision Meeting Abstract  |   December 2011
Efficient integration of local perceived blur in discrimination and matching
Author Affiliations
  • Christopher Taylor
    Harvard Medical School, Opthalmology
  • Peter Bex
    Harvard Medical School, Opthalmology
Journal of Vision December 2011, Vol.11, 13. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Christopher Taylor, Peter Bex; Efficient integration of local perceived blur in discrimination and matching. Journal of Vision 2011;11(15):13.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Blur is a fundamental property for image and optical quality assessment. Blur has been studied with single contours, but natural scenes are composed of a range of depth planes giving rise to retinal images with broad distributions of blur. To study blur perception under more natural conditions, we generated locally controllable dead leaves stimuli – 128 mutually occluding ellipses of random luminance, contrast, orientation, size, aspect ratio, and position. Each element was individually Gaussian blurred allowing blur mean and blur variance to be manipulated independently. Four blocked mean blurs (μ = 2, 4, 8, 16 cycles/image) and three blur variance levels (σ = 0, 0.25, and 0.5 * μ) were interleaved in a 2IFC blur discrimination task. In a matching task, the perceived blur of a high variance image, with fixed mean blur, was matched to that of a low variance image of adjustable mean blur. Matching results and equivalent noise analysis on the blur discrimination data showed that observers were surprisingly capable of integrating wide distributions of blur with limited bias toward sharp or highly blurred elements. Thus, the distribution of local image blur, rather than the blur of single items, determines perceived optical and image quality.


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.