August 2012
Volume 12, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2012
How Recurrent Dynamics Explain Crowding
Author Affiliations
  • Aaron Clarke
    LPSY, BMI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • Michael Herzog
    LPSY, BMI, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
  • Frouke Hermens
    Laboratory of Experimental Psychology, University of Leuven (K.U. Leuven), Tiensestraat 102 - box 3711, Leuven B-3000 Belgium
Journal of Vision August 2012, Vol.12, 339. doi:https://doi.org/10.1167/12.9.339
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Aaron Clarke, Michael Herzog, Frouke Hermens; How Recurrent Dynamics Explain Crowding. Journal of Vision 2012;12(9):339. https://doi.org/10.1167/12.9.339.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

In crowding, flankers impair perception of a target. For example, Vernier offset discrimination deteriorates when the Vernier is flanked by parallel lines. Pooling models explain crowding by averaging of neural activity corresponding to the Vernier and the flankers, thus, reducing signal to noise ratio. However, recently, it was shown that flankers, longer than the Vernier, lead to less crowding than equal length flankers. Adding additional long flankers reduced crowding almost fully- in stark contrast to pooling models which predict just the opposite result. These and other findings clearly show that crowding cannot be explained by local spatial interactions, but global computations are needed. Here, we show that a Wilson-Cowan type model can explain both classical, local and recent, global aspects of crowding. The Wilson-Cowan type model employs end-stopped receptive fields with isotropic excitatory connections and anisotropic lateral inhibitory connections that are reciprocal between adjacent neurons. The key feature of the models is a spread of neural activity across similar elements which are eliminated during recurrent inhibition. For example, crowding strength decreases the more long flankers are presented because these similar, long flankers inhibit each other during time consuming processing and, thus, reduce inhibition on the dissimilar Vernier. For equal length flankers, the Vernier is "treated" similarly to a flanker and is inhibited. For this reason, and in accordance with psychophysical data, crowding does not vary with the number of equal length flankers.

Meeting abstract presented at VSS 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×