August 2012
Volume 12, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2012
Modelling adaptation using the Adelson-Bergen energy sensor
Author Affiliations
  • George Mather
    Psychology, University of Lincoln, UK
  • Andrea Pavan
    SISSA, Italy
  • Adriano Contillo
    SISSA, Italy
Journal of Vision August 2012, Vol.12, 763. doi:https://doi.org/10.1167/12.9.763
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      George Mather, Andrea Pavan, Adriano Contillo; Modelling adaptation using the Adelson-Bergen energy sensor. Journal of Vision 2012;12(9):763. https://doi.org/10.1167/12.9.763.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The motion energy sensor (Adelson & Bergen, 1985, JOSA, A2, 284-299) has been shown to account for a wide range of physiological and psychophysical results such as motion direction discrimination (e.g. Georgeson & Scott-Samuel, 1999, Vision Res. 39, 4393-4402). It has become established as the standard computational model for retinal movement sensing in the human visual system. The basic model can be implemented efficiently in Matlab® code. Adaptation effects such as threshold elevation and changes in perceived direction have been extensively studied in the psychophysical literature, but current implementations of the energy sensor do not provide directly for modelling adaptation-induced changes in output. We describe an extension of the model to incorporate changes in output due to adaptation. The extended model first computes a space-time representation of the output to a given stimulus, and then a simple RC gain-control circuit (‘leaky integrator’) is applied in the time domain (van de Grind et al., Vision Res. 44, 2269-2284). Model output shows effects which mirror those observed in psychophysical studies of motion adaptation: A decline in sensor output during continuous stimulation, and changes in the relative outputs of different sensors following this adaptation.

Meeting abstract presented at VSS 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×