August 2012
Volume 12, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2012
Accurately modeling Visual Working Memory performance at the individual trial level
Author Affiliations
  • Hee Yeon Im
    Department of Psychological and Brain Sciences, Johns Hopkins University
  • Justin Halberda
    Department of Psychological and Brain Sciences, Johns Hopkins University
Journal of Vision August 2012, Vol.12, 858. doi:https://doi.org/10.1167/12.9.858
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Hee Yeon Im, Justin Halberda; Accurately modeling Visual Working Memory performance at the individual trial level. Journal of Vision 2012;12(9):858. https://doi.org/10.1167/12.9.858.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Visual Working Memory (VWM) performance may emerge from factors such as the likelihood that a given item has been processed (Pm) and the resolution of stored representations (SD). Recent approaches to modeling VWM have assumed that, when an item is not processed (i.e., Pm=0), observers’ guesses will be uniform ­– but the actual pattern of guesses was not measured. And, has assumed that internal representations are subject to Gaussian noise (SD) that is constant across various feature values – but this constancy was not empirically tested. These assumptions make generalization difficult when guesses are not uniform (e.g., biased guessing) and when internal noise varies as a function of the parameter value (e.g., scalar variability in numerosity; Whalen, 1999; oblique effect in orientation; Appelle, 1972). Here we demonstrate a general-purpose approach to modeling performance in VWM tasks that includes: 1) empirically measuring guesses on trials with 0ms-stimulus-duration, 2) generating appropriate models of internal representation for particular feature dimensions, and 3) iteratively generating mixture models to estimate a likelihood that each observation derives from an internal representation. In three experiments, we use this method to estimate Pm and SD for color, orientation, and numerosity of arrays of 1, 3, or 6 sets at stimulus duration of 0, 33, 67, 100, 133, or 198ms. Results show that Pm increases from 0 to 100ms then attains asymptote while SD remains stable across all SOA's, suggesting that information accumulation in perception completes within 100ms and that stored information in VWM is all-or-none. SD remained constant across set sizes, favoring a fixed-resolution model of VWM. This approach embraces and extends previous modeling efforts, allowing us to empirically estimate guessing, capture a wider range of appropriate models for internal representations, and analyze data at the individual trial level.

Meeting abstract presented at VSS 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×