August 2012
Volume 12, Issue 9
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2012
Contour change detection in the periphery: threshold as a function of temporal interval
Author Affiliations
  • Desmond C. Ong
    Division of Psychology, College of Humanities, Arts & Social Sciences, Nanyang Technological University, Singapore\nDepartment of Psychology, College of Arts and Sciences, Cornell University
  • Anthony Hayes
    Division of Psychology, College of Humanities, Arts & Social Sciences, Nanyang Technological University, Singapore
  • David J. Field
    Department of Psychology, College of Arts and Sciences, Cornell University
Journal of Vision August 2012, Vol.12, 1061. doi:https://doi.org/10.1167/12.9.1061
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Desmond C. Ong, Anthony Hayes, David J. Field; Contour change detection in the periphery: threshold as a function of temporal interval. Journal of Vision 2012;12(9):1061. https://doi.org/10.1167/12.9.1061.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

We investigate the ability of human observers to detect small rotational changes in elements of a contour as a function of temporal separation and relative position. A contour, made up of seven discrete Gabor elements (SD of 0.16 deg and a centre-to-centre separation of 2 deg visual angle) constructed via co-circular rotation, was presented at different eccentricities in either hemifield (2, 4, and 6 deg). A subsequent stimulus, presented in either hemifield, was either identical to the first, or differed in shape: each element underwent a small rotation, but adhered to the co-circular construction rule. A forced-choice procedure with an adaptive staircase was used to find the minimum rotation threshold for accurate discernment of a change in shape of the contour. We found remarkably consistent performance over a range of inter-stimulus intervals (ISI) from 500 ms to 16 ms (a single frame at 60 Hz). Reduction of the ISI to 0 ms, when presentation of both stimuli was in the same hemifield and eccentricity, resulted in a dramatic drop in threshold, most likely due to the impact of a relative motion cue that is blocked with even a 16 ms ISI. The relative motion cue was also found to be sensitive to small horizontal jitter. We discuss our findings in the context of the change-blindness and contour-integration literatures.

Meeting abstract presented at VSS 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×