Abstract
After remaining terra incognita for 40 years, the detailed organization of the foveal confluence has just recently been described in humans. I will present recent high resolution mapping results in human subjects and introduce current concepts of its organization in human and other primates (Schira et al., J. Nsci, 2009). I will then introduce a new algebraic retino-cortical projection function that accurately models the V1-V3 complex to the level of our knowledge about the actual organization (Schira et al. PLoS Comp. Biol. 2010). Informed by this model I will discuss important properties of foveal cortex in primates. These considerations demonstrate that the observed organization though surprising at first hand is in fact a good compromise with respect to cortical surface and local isotropy, proving a potential explanation for this organization. Finally, I will discuss recent advances such as multi-channel head coils and parallel imaging which have greatly improved the quality and possibilities of MRI. Unfortunately, most fMRI research is still essentially performed in the same old 3 by 3 by 3 mm style - which was adequate when using a 1.5T scanner and a birdcage head coil. I will introduce simple high resolution techniques that allow fairly accurate estimates of the foveal organization in research subjects within a reasonable timeframe of approximately 20 minutes, providing a powerful tool for research of foveal vision.
Meeting abstract presented at VSS 2012