December 2012
Volume 12, Issue 14
Free
OSA Fall Vision Meeting Abstract  |   December 2012
Cross-orientation masking in color vision: application of the two-stage model with suppression within and between eyes.
Author Affiliations
  • Yeon Jin Kim
    McGill Vision Research, Dept of Ophthalmology, McGill University, Montreal, QC, CA
  • Mina Gheiratmand
    McGill Vision Research, Dept of Ophthalmology, McGill University,Montreal, QC, CA
  • Kathy T. Mullen
    McGill Vision Research, Dept of Ophthalmology, McGill University,Montreal, QC, CA
Journal of Vision December 2012, Vol.12, 11. doi:https://doi.org/10.1167/12.14.11
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Yeon Jin Kim, Mina Gheiratmand, Kathy T. Mullen; Cross-orientation masking in color vision: application of the two-stage model with suppression within and between eyes.. Journal of Vision 2012;12(14):11. https://doi.org/10.1167/12.14.11.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Cross-orientation masking occurs when the detection of a test grating is masked by a superimposed grating at an orthogonal orientation, and is widely thought to indicate the presence of "cross-channel" interactions mediating contrast normalization. In achromatic vision, modeling and psychophysical experiments have suggested that there are at least two routes to cross-orientation suppression prior to binocular summation: a within-eye (monocular) pathway that is non-adaptable, and an interocular (dichoptic) adaptable pathway that is cortical and mediates mutual suppression between the eyes (Baker et al., Neuroscience, 146, 2007: Meese & Hess, 2004). Here we develop this two-stage model and test its application to color vision. Test and mask stimuli were red-green isoluminant Gabors presented orthogonally. TvC masking functions were obtained for three spatial frequencies (0.375, 0.75 & 1.5cpd at 2Hz) for monocular, binocular and dichoptic presentations in four subjects. We generalized the two-stage model so that it could be used to fit the monocular, dichoptic and binocular TvC functions. We determined the weight of suppression parameters for the monocular and dichoptic suppression, with the remaining parameters fixed on the basis of known values. We find that the two-stage model is a good fit to the chromatic data, supporting the idea that color and achromatic vision use the same two routes to cross-orientation suppression. The dichoptic pathway shows greater suppression than monocular in color vision. It is also unselective as it can be activated by achromatic or chromatic contrast (Mullen et al., 2012). We find no effect of spatial frequency on either pathway.

Meeting abstract presented at OSA Fall Vision 2012

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×