Abstract
Working memory plays a key role in visual cognition, allowing the visual system to span the gaps created by blinks and saccades and providing a major source of control over attention and eye movements. Moreover, measurements of visual working memory capacity for simple visual features are strongly correlated with individual differences in higher cognitive abilities and are related to psychiatric and neurological disorders. It is therefore critically important that we understand the nature of capacity limits in visual working memory. Two major classes of theories have been proposed, discrete theories in which a limited number of items can be concurrently stored with high resolution, and continuous theories in which a potentially limitless number of items can be stored by reducing the precision of the representations. In this talk, we will review 15 years of research on the nature of visual working memory representations and present new evidence that favors discrete representations.
Meeting abstract presented at VSS 2013