August 2014
Volume 14, Issue 10
Vision Sciences Society Annual Meeting Abstract  |   August 2014
The antisaccade task: Sensory- and motor-related costs to oculomotor planning
Author Affiliations
  • Jesse DeSimone
    School of Kinesiology, The University of Western Ontario
  • Gabriella Aber
    School of Kinesiology, The University of Western Ontario
  • Matthew Heath
    School of Kinesiology, The University of Western Ontario
Journal of Vision August 2014, Vol.14, 94. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jesse DeSimone, Gabriella Aber, Matthew Heath; The antisaccade task: Sensory- and motor-related costs to oculomotor planning. Journal of Vision 2014;14(10):94. doi:

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

The concurrent presentation of a target and remote distractor (> 20°) increases the planning times of stimulus-driven prosaccades (i.e., the remote distractor effect, RDE). In the present investigation, we sought to determine whether antisaccade planning times are similarly influenced by the presentation of a remote distractor. Indeed, the basis for this question stems from the fact that the non-standard mapping between stimulus and response in the antisaccade task provides a basis for determining whether the sensory- or motor-related features of a distractor influence oculomotor planning times. In Experiment 1, participants completed pro- and antisaccades in a condition that entailed a single and exogenously presented target (i.e., control condition) and conditions wherein the target was presented simultaneously with distractors at remote (i.e., contralateral, foveal) or ipsilateral locations relative to the target. Results for prosaccade latencies showed the aforementioned RDE, whereas antisaccade latencies for all distractor locations were increased compared to their control condition counterparts. Experiment 2 involved same basic methods as Experiment 1 with the exception that we precued distractor location to reduce the attentional demands associated with disentangling target and distractor locations at response planning. Results confirmed the findings of Experiment 1 in that antisaccade latencies were increased across each distractor location. Moreover, the antisaccade latency cost was increased when the spatial properties of the distractor were congruent with motor-related task goals. Based on these findings, we propose that the non-standard nature of antisaccades renders a general increase in oculomotor planning times regardless of the distractor's spatial properties. Further, we propose the spatial relations between distractor and movement-related goals elicit an increased inhibition of oculomotor networks than the spatial relations between distractor and veridical stimulus location.

Meeting abstract presented at VSS 2014


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.