August 2014
Volume 14, Issue 10
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2014
Models of color working memory with color perception as a variable
Author Affiliations
  • Gi-Yeul Bae
    Johns Hopkins University
  • Maria Olkkonen
    University of Pennsylvania
  • Sarah Allred
    Rutgers-The State University of New Jersey
  • Colin Wilson
    Johns Hopkins University
  • Jonathan Flombaum
    Johns Hopkins University
Journal of Vision August 2014, Vol.14, 159. doi:https://doi.org/10.1167/14.10.159
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Gi-Yeul Bae, Maria Olkkonen, Sarah Allred, Colin Wilson, Jonathan Flombaum; Models of color working memory with color perception as a variable. Journal of Vision 2014;14(10):159. https://doi.org/10.1167/14.10.159.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Surprisingly, the rapidly expanding literature on models of color working memory (CWM) has made little contact with research on color perception. With the aim of integrating these literatures, we applied standard color perception methodology to an influential CWM task. First, we scrutinized methodological practice for color rendering. Published CWM research typically specifies colors in CIELAB space, but does not verify that produced color coordinates match those requested. When we applied standard calibration procedures to our display, we discovered that typical CWM methods produce colors that vary considerably in luminance, and that many were out of gamut. Thus the space from which colors were sampled was not a ring, undermining the common practice of collapsing across trials with different colors when estimating model parameters. Next, we generated a CIELAB color ring with fixed luminance, and we verified that color rendering was accurate. With this color ring, we looked for color-specific variability in memory and perception. We found considerable color-dependent variability in response dispersion (precision) and central tendency (bias) in two delayed-estimation experiments. Color-specific variability in memory correlated significantly between observers and memory loads. Moreover, it correlated with the perceptual variability obtained in a third experiment without a delay. Finally, we investigated potential interactions between color memory and color categories defined by verbal naming. In two experiments, observers identified focal colors and category boundaries. We found that response precision and bias may depend on category representations associated with remembered colors. Using these empirical results, we developed several new models of CWM that include category-influenced effects, as well as binding computations relying on categorical similarity. These results suggest a reevaluation of previous CWM models. More broadly, they suggest that not all colors are structured identically in color working memory; instead, both perceptual and memory representations vary in complex ways throughout color space.

Meeting abstract presented at VSS 2014

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×