August 2014
Volume 14, Issue 10
Free
Vision Sciences Society Annual Meeting Abstract  |   August 2014
Visual information shapes the dynamics of cortico-basal ganglia pathways during perceptual response selection and inhibition
Author Affiliations
  • Sara Jahfari
    Cognitive Science Centre Amsterdam, University of Amsterdam, The Netherlands
  • Lourens J. Waldorp
    Department of Psychology, University of Amsterdam, The Netherlands
  • K. Richard Ridderinkhof
    Cognitive Science Centre Amsterdam, University of Amsterdam, The Netherlands
  • H. Steven Scholte
    Cognitive Science Centre Amsterdam, University of Amsterdam, The Netherlands
Journal of Vision August 2014, Vol.14, 308. doi:https://doi.org/10.1167/14.10.308
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Sara Jahfari, Lourens J. Waldorp, K. Richard Ridderinkhof, H. Steven Scholte; Visual information shapes the dynamics of cortico-basal ganglia pathways during perceptual response selection and inhibition. Journal of Vision 2014;14(10):308. https://doi.org/10.1167/14.10.308.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Action selection often requires the transformation of visual information into motor plans. When visual information is transformed fast, successful response inhibition might require suppression of both the prepared muscle activity and processing of visual input. We examined how the quality of visual information influences classic fronto-basal ganglia routes associated with response selection and inhibition. Human fMRI data was collected from a stop-task with faces containing low-, high-, or all spatial frequencies. Using the drift-diffusion model for decision-making, removal of spatial frequencies was found to slow the rate of information accumulation and reduce cautiousness. On go-trials, effective connectivity analysis showed action selection to emerge through a cortico-basal ganglia network with projections from both visual and prefrontal cortex into the "direct" and "indirect" pathways of the basal ganglia. Across conditions, slowed accumulation increased connectivity from both dorsolateral prefrontal cortex and fusiform face area into the putamen. Concurrently, presupplementary motor area connectivity into putamen, and lateral occipital connectivity into subthalamic nucleus was weakened to allow lowered criteria for correct decisions. During stop trials, both visual and prefrontal cortex projected into the "hyperdirect" and "indirect" pathways of the basal ganglia. Most notably, only when a stop signal followed unfiltered faces (i.e., with the highest drift rate) the optimal model contained additional connections from prefrontal to visual cortex. Further inspection related stronger prefrontal-visual connectivity to faster inhibition times. Therefore, prefrontal to visual cortex connections might suppress the fast flow of visual input for the go task, such that the inhibition process can finish before the selection process. Together, these results provide compelling insights into how visual information interacts with fronto-basal ganglia systems, and further specify how selection and inhibition processes emerge within the basal ganglia through top-down adjustments from prefrontal-, and bottom-up evaluations from visual cortex.

Meeting abstract presented at VSS 2014

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×