Abstract
Over the last several decades, visual neuroscientists have learned how to use fMRI to identify multiple visual field maps in the living human brain. Several theories have been proposed to characterize the organization of these visual field maps, and a key theory with substantial support distinguishes dorsal stream involving with spatial processing and ventral stream involving categorical processing. We combined fMRI, diffusion MRI and fiber tractography to identify a major white matter pathway, the Vertical Occipital Fasciculus (VOF), connecting maps within the dorsal and ventral visual streams. We use a model-based method, LInear Fascicle Evaluation (LIFE), to assess the statistical evidence supporting the VOF wiring pattern. There is strong evidence supporting the hypothesis that dorsal and ventral streams of visual maps communicate through the VOF. This pathway is large and its organization suggests that the human ventral and dorsal visual maps communicate substantial information through V3A/B and hV4/VO-1. We suggest that the VOF is crucial for transmitting signals between regions that encode object properties including form, identity and color information and regions that map spatial location to action plans. Findings on the VOF will extend the current understandings of the human visual field map hierarchy.
Meeting abstract presented at VSS 2014