Abstract
Compared to most ophthalmic technologies, adaptive optics, or AO, is relatively young. The first working systems were presented in 1997 and, owing in part to its complexity, the development of AO systems has been relatively slow. Nevertheless, AO for vision science is coming of age and the scope of applications continues to increase. Applications of AO can be broadly split along two lines; for retinal imaging and for testing visual function. This review will focus on the applications of adaptive optics for testing visual function. Since this represents only a subset of the field of AO for ophthalmoscopy, it is possible to cite virtually every paper that has been published in the field to date. As such, this is a comprehensive review whose intent is to get all readers up to speed on the state of the art. More importantly, perhaps, this review will focus on the types of science that can be accomplished with AO with a view to future applications. The reference list alone is informative, since the reader will quickly discover that the community that is using AO for vision science is rather small. Looking at the dates for the cited papers, the reader will also discover that the field is rapidly expanding.
Liang, J., Williams, D. R., & Miller, D. (1997). Supernormal vision and high-resolution retinal imaging through adaptive optics. Journal of the Optical Society of America A, 14, 2884–2892.
Williams, D., Yoon, G. Y., Porter, J., Guirao, A., Hofer, H., & Cox, I. (2000). Visual benefit of correcting higher order aberrations of the eye. Journal of Refractive Surgery, 16, S554–S559.
Yoon, G. Y., & Williams, D. R. (2002). Visual performance after correcting the monochromatic and chromatic aberrations of the eye. Journal of the Optical Society of America A, 19, 266–275.
Lundstrom, L., Manzanera, S., Prieto, P. M., Ayala, D. B., Gorceix, N., Gustafsson, J., et al. (2007). Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye. Optics Express, 15, 12654–12661.
Rocha, K. M., Vabre, L., Harms, F., Chateau, N., & Krueger, R. R. (2007). Effects of Zernike wavefront aberrations on visual acuity measured using electromagnetic adaptive optics technology. Journal of Refractive Surgery, 23, 953–959.
Dalimier, E., Dainty, C., & Barbur, J. L. (2008). Effects of higher-order aberrations on contrast acuity as a function of light level. Journal of Modern Optics, 55, 791–803.
Dalimier, E., & Dainty, C. (2008). Use of a customized vision model to analyze the effects of higher-order ocular aberrations and neural filtering on contrast threshold performance. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 25, 2078–2087.
Marcos, S., Sawides, L., Gambra, E., & Dorronsoro, C. (2008). Influence of adaptive-optics ocular aberration correction on visual acuity at different luminances and contrast polarities. Journal of Vision, 8(13):1, 1–12, http://www.journalofvision.org/content/8/13/1, doi:10.1167/8.13.1.
Atchison, D. A., Guo, H., Charman, W. N., & Fisher, S. W. (2009). Blur limits for defocus, astigmatism and trefoil. Vision Research, 49, 2393–2403.
Atchison, D. A., Guo, H., & Fisher, S. W. (2009). Limits of spherical blur determined with an adaptive optics mirror. Ophthalmic Physiological Optics, 29, 300–311.
Elliott, S. L., Choi, S. S., Doble, N., Hardy, J. L., Evans, J. W., & Werner, J. S. (2009). Role of high-order aberrations in senescent changes in spatial vision. Journal of Vision, 9(2):24, 1–16, http://www.journalofvision.org/content/9/2/24, doi:10.1167/9.2.24.
Li, J., Xiong, Y., Wang, N., Li, S., Dai, Y., Xue, L., et al. (2009). Effects of spherical aberration on visual acuity at different contrasts. Journal of Cataract & Refractive Surgery, 35, 1389–1395.
Li, S., Xiong, Y., Li, J., Wang, N., Dai, Y., Xue, L., et al. (2009). Effects of monochromatic aberration on visual acuity using adaptive optics. Optometry and Vision Science, 86, 868–874.
Perez, G. M., Manzanera, S., & Artal, P. (2009). Impact of scattering and spherical aberration in contrast sensitivity. Journal of Vision, 9(3):19, 1–10, http://www.journalofvision.org/content/9/3/19, doi:10.1167/9.3.19.
Rouger, H., Benard, Y., & Legras, R. (2009). Effect of monochromatic induced aberrations on visual performance measured by adaptive optics technology. Journal of Refractive Surgery, 1–10.
Artal, P., Manzanera, S., Piers, P., & Weeber, H. (2010). Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. Optics Express, 18, 1637–1648.
Guo, H., & Atchison, D. A. (2010). Subjective blur limits for cylinder. Optometry and Vision Science, 87, E549–E559.
Gupta, P., Guo, H., Atchison, D. A., & Zele, A. J. (2010). Effect of optical aberrations on the color appearance of small defocused lights. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 27, 960–967.
Rocha, K. M., Vabre, L., Chateau, N., & Krueger, R. R. (2010). Enhanced visual acuity and image perception following correction of highly aberrated eyes using an adaptive optics visual simulator. Journal of Refractive Surgery, 26, 52–56.
Sawides, L., Gambra, E., Pascual, D., Dorronsoro, C., & Marcos, S. (2010). Visual performance with real-life tasks under adaptive-optics ocular aberration correction. Journal of Vision, 10(5):19, http://www.journalofvision.org/content/10/5/19, doi:10.1167/10.5.19.
de Gracia, P., Dorronsoro, C., Gambra, E., Marin, G., Hernandez, M., & Marcos, S. (2010). Combining coma with astigmatism can improve retinal image over astigmatism alone. Vision Research, 50, 2008–2014.
Fernandez, E. J., Manzanera, S., Piers, P., & Artal, P. (2002). Adaptive optics visual simulator. Journal of Refractive Surgery, 18, S634–S638.
Poonja, S., Patel, S., Henry, L., & Roorda, A. (2005). Dynamic visual stimulus presentation in an adaptive optics scanning laser ophthalmoscope. Journal of Refractive Surgery, 21, S575–S580.
Manzanera, S., Prieto, P. M., Ayala, D. B., Lindacher, J. M., & Artal, P. (2007). Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements. Optics Express, 15, 16177–16188.
Fernandez, E. J., Prieto, P. M., & Artal, P. (2009). Binocular adaptive optics visual simulator. Optics Letters, 34, 2628–2630.
Canovas, C., Prieto, P. M., Manzanera, S., Mira, A., & Artal, P. (2010). Hybrid adaptive-optics visual simulator. Optics Letters, 35, 196–198.
Yang, Q., Arathorn, D. W., Tiruveedhula, P., Vogel, C. R., & Roorda, A. (2010). Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery. Optics Express, 18, 17841–17858.
Artal, P., Chen, L., Fernandez, E. J., Singer, B., Manzanera, S., & Williams, D. R. (2004). Neural compensation for the eye's optical aberrations. Journal of Vision, 4(4):4, 281–287, http://www.journalofvision.org/content/4/4/4, doi:10.1167/4.4.4.
Chen, L., Artal, P., Gutierrez, D., & Williams, D. R. (2007). Neural compensation for the best aberration correction. Journal of Vision, 7(10):9, 1–9, http://www.journalofvision.org/content/7/10/9, doi:10.1167/7.10.9.
Rossi, E. A., Weiser, P., Tarrant, J., & Roorda, A. (2007). Visual performance in emmetropia and low myopia after correction of high-order aberrations. Journal of Vision, 7(8):14, 1–14, http://www.journalofvision.org/content/7/8/14, doi:10.1167/7.8.14.
Sabesan, R., Jeong, T. M., Carvalho, L., Cox, I. G., Williams, D. R., & Yoon, G. (2007). Vision improvement by correcting higher-order aberrations with customized soft contact lenses in keratoconic eyes. Optics Letters, 32, 1000–1002.
Sabesan, R., & Yoon, G. (2009). Visual performance after correcting higher order aberrations in keratoconic eyes. Journal of Vision, 9(5):6, 1–10, http://www.journalofvision.org/content/9/5/6, doi:10.1167/9.5.6.
Murray, I. J., Elliott, S. L., Pallikaris, A., Werner, J. S., Choi, S., & Tahir, H. J. (2010). The oblique effect has an optical component: orientation-specific contrast thresholds after correction of high-order aberrations. Journal of Vision, 10(11):10, 1–12, http://www.journalofvision.org/content/10/11/10, doi:10.1167/10.11.10.
Sabesan, R., & Yoon, G. (2010). Neural compensation for long-term asymmetric optical blur to improve visual performance in keratoconic eyes. Investigative Ophthalmology & Visual Science, 51, 3835–3839.
Rossi, E. A., & Roorda, A. (2010). Is visual resolution after adaptive optics correction susceptible to perceptual learning? Journal of Vision, 10(12):11, 1–14, http://www.journalofvision.org/content/10/12/11, doi:10.1167/.10.12.11.
Sawides, L., Marcos, S., Ravikumar, S., Thibos, L., Bradley, A., & Webster, M. (2010). Adaptation to astigmatic blur. Journal of Vision, 10(12):22, 1–15, http://www.journalofvision.org/content/10/12/22, doi:10.1167/.10.12.22..
Piers, P. A., Fernandez, E. J., Manzanera, S., Norrby, S., & Artal, P. (2004). Adaptive optics simulation of intraocular lenses with modified spherical aberration. Investigative Ophthalmology & Visual Science, 45, 4601–4610.
Piers, P. A., Manzanera, S., Prieto, P. M., Gorceix, N., & Artal, P. (2007). Use of adaptive optics to determine the optimal ocular spherical aberration. Journal of Cataract & Refractive Surgery, 33, 1721–1726.
Guo, H., Atchison, D. A., & Birt, B. J. (2008). Changes in through-focus spatial visual performance with adaptive optics correction of monochromatic aberrations. Vision Research, 48, 1804–1811.
Rocha, K. M., Vabre, L., Chateau, N., & Krueger, R. R. (2009). Expanding depth of focus by modifying higher-order aberrations induced by an adaptive optics visual simulator. Journal of Cataract & Refractive Surgery, 35, 1885–1892.
Werner, J. S., Elliott, S. L., Choi, S. S., & Doble, N. (2009). Spherical aberration yielding optimum visual performance: evaluation of intraocular lenses using adaptive optics simulation. Journal of Cataract & Refractive Surgery, 35, 1229–1233.
Legras, R., Benard, Y., & Rouger, H. (2010). Through-focus visual performance measurements and predictions with multifocal contact lenses. Vision Research, 50, 1185–1193.
Fernandez, E. J., & Artal, P. (2005). Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 22, 1732–1738.
Chen, L., Kruger, P. B., Hofer, H., Singer, B., & Williams, D. R. (2006). Accommodation with higher-order monochromatic aberrations corrected with adaptive optics. Journal of the Optical Society of America A, Optics, Image Science, and Vision, 23, 1–8.
Hampson, K. M. (2008). Adaptive optics and vision. Journal of Modern Optics, 55, 3425–3467.
Chin, S. S., Hampson, K. M., & Mallen, E. A. (2009). Role of ocular aberrations in dynamic accommodation control. Clinical & Experimental Optometry, 92, 227–237.
Chin, S. S., Hampson, K. M., & Mallen, E. A. (2009). Effect of correction of ocular aberration dynamics on the accommodation response to a sinusoidally moving stimulus. Optics Letters, 34, 3274–3276, similar to above.
Gambra, E., Sawides, L., Dorronsoro, C., & Marcos, S. (2009). Accommodative lag and fluctuations when optical aberrations are manipulated. Journal of Vision, 9(6):4, 1–15, http://www.journalofvision.org/content/9/6/4, doi:10.1167/9.6.4.
Hofer, H., Singer, B., & Williams, D. R. (2005). Different sensations from cones with the same pigment. Journal of Vision, 5(5):5, 444–454, http://www.journalofvision.org/content/5/5/5, doi:10.1167/5.5.5.
Putnam, N. M., Hofer, H., Doble, N, Chen, L., Carroll, J., and Williams, D. R. (2005). The locus of fixation and the foveal cone mosaic. Journal of Vision, 5(7):3, 632–639, http://www.journalofvision.org/content/5/7/3, doi:10.1167/5.7.3.
Makous, W., Carroll, J., Wolfing, J. I., Lin, J., Christie, N., and Williams, D. R. (2006). Retinal microscotomas revealed with adaptive-optics microflashes. Investigative Ophthalmology & Visual Science, 47, 4160–4167.
Raghunandan, A., Frasier, J., Poonja, S., Roorda, A., & Stevenson, S. B. (2008). Psychophysical measurements of referenced and unreferenced motion processing using high-resolution retinal imaging. Journal of Vision, 8(14):14, 1–11, http://www.journalofvision.org/content/8/14/14, doi:10.1167/8.14.14.
Sincich, L. C., Zhang, Y., Tiruveedhula, P., Horton, J. C., & Roorda, A. (2009). Resolving single cone inputs to visual receptive fields. Nature Neuroscience, 12, 967–969.
Dalimier, E., & Dainty, C. (2010). Role of ocular aberrations in photopic spatial summation in the fovea. Optics Letters, 35, 589–591.
Li, K. Y., Tiruveedhula, P., & Roorda, A. (2010). Intersubject variability of foveal cone photoreceptor density in relation to eye length. Investigative Ophthalmology & Visual Science, 51, 6858–6867.
Rossi, E. A., & Roorda, A. (2010). The relationship between visual resolution and cone spacing in the human fovea. Nature Neuroscience, 13, 156–157.
Stevenson, S. B., Roorda, A., & Kumar, G. (2010). Eye tracking with the adaptive optics scanning laser ophthalmoscope. In S. N. Spencer (Ed.), Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications (pp. 195–198). New York, NY, USA: Association for Computed Machinery.