September 2015
Volume 15, Issue 12
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2015
Exploring timescales of adaptation mechanisms along the visual-processing hierarchy
Author Affiliations
  • Gaoxing Mei
    Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
  • Xue Dong
    Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
  • Min Bao
    Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, P.R. China
Journal of Vision September 2015, Vol.15, 35. doi:https://doi.org/10.1167/15.12.35
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Gaoxing Mei, Xue Dong, Min Bao; Exploring timescales of adaptation mechanisms along the visual-processing hierarchy. Journal of Vision 2015;15(12):35. https://doi.org/10.1167/15.12.35.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Recent work has indicated that adaptation is controlled by multiple mechanisms acting at different timescales, but their neural underpinnings remain largely unknown. Here we explored this issue with two psychophysical experiments. We first used a “deadaptation” procedure (Bao, Fast, Mesik, & Engel, 2013) to investigate contrast adaptation under either the binocular or monocular adaptation condition. Thresholds were measured with a spatial 4-AFC contrast detection task, tracked by a one-down-one-up staircase. The “deadaptation” duration was individually set, based upon a pilot test where 5 minutes of adaptation to high contrast was followed by 280s of deadaptation. Interestingly, the effects of adaptation failed to completely decay to the baselines under the monocular condition in 21 out of 37 subjects, but succeeded under the binocular condition in everyone. For the 16 subjects whose adaptation’s effects could deadapt to the baselines, their data showed spontaneous recovery in the post-tests, demonstrating that multiple mechanisms controlled adaptation in both conditions. Critically, it took longer to deadapt to the baseline (p < .001) in the monocular (84s) than the binocular condition (51s). Given the larger proportion of monocular neurons activating in the binocular condition, these results suggest that longer-term mechanisms reside at the binocular processing stage. To compare the timescales of mechanisms spanning wider in the visual processing hierarchy, we modified Hancock and Pierce’s (2008) paradigm to track the decay of TAE in 15 subjects after adaptation to either the compound gratings (curvature) or component gratings. An exponential function was fit to the timecourses following adaptation, which revealed slower time constant (p < .05) for the compound (149s) than the component (113s) adaptation condition. This indicates longer-term mechanisms in the mid-level (e.g. V4) than the early visual areas. Our findings imply that cortical mechanisms for controlling adaptation may become more sluggish along the visual processing stream.

Meeting abstract presented at VSS 2015

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×