September 2015
Volume 15, Issue 12
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2015
Acquisition and transfer of models of visuo-motor uncertainty in a throwing task
Author Affiliations
  • Hang Zhang
    Department of Psychology, New York University Center for Neural Science, New York University
  • Mila Kulsa
    Department of Psychology, New York University
  • Laurence Maloney
    Department of Psychology, New York University Center for Neural Science, New York University
Journal of Vision September 2015, Vol.15, 976. doi:https://doi.org/10.1167/15.12.976
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Hang Zhang, Mila Kulsa, Laurence Maloney; Acquisition and transfer of models of visuo-motor uncertainty in a throwing task. Journal of Vision 2015;15(12):976. https://doi.org/10.1167/15.12.976.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

We investigated how well people model their own visuo-motor error distribution in a throwing task and how well they transfer this model to a novel but predictable situation. Methods: The experiment consisted of three phases. Training phase. Subjects threw beanbags underhand towards targets displayed on a wall-mounted touch screen for 300 trials. The distribution of their endpoints was bivariate Gaussian. Choice phase. We used the 2-IFC task by Zhang, Daw, & Maloney (2013, PLoS Comp Biol): subjects repeatedly chose which of two targets varying in shape and size they would prefer to attempt to hit. Their choices allowed us to estimate their internal models of visuo-motor error distribution. Transfer phase. Subjects repeated the choice phase from a different vantage point, the same distance from the screen but with the throwing direction shifted 45 degrees. From the new position, visuo-motor error was effectively expanded horizontally by sqrt(2) and good performance required that subjects allow for this expansion in their judgments. Fifteen naïve subjects participated. For each subject, we estimated the horizontal and vertical standard deviations of her distribution models in the choice and transfer phases and compared them to those of her true error distribution. Results: (1) In their models for the choice phase, subjects underestimated the vertical-to-horizontal ratio of their true error distribution (mean 1.17 vs. 1.84), effectively assuming a more isotropic model. (2) Subjects’ models in the transfer phase had a vertical-to-horizontal ratio close to 1/sqrt(2), agreeing with an objectively correct transformation of their incorrect isotropic models in the choice phase. (3) The horizontal and vertical standard deviations in subjects’ models were highly correlated (Pearson’s r = 0.89 for choice and 0.92 for transfer), while the counterpart correlation for the true distribution was only 0.58, favoring that subjects’ distribution models were coded in polar coordinates.

Meeting abstract presented at VSS 2015

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×