September 2015
Volume 15, Issue 12
Vision Sciences Society Annual Meeting Abstract  |   September 2015
Generalizability of implicit spatial learning depends on task difficulty
Author Affiliations
  • Bo-Yeong Won
    Department of Psychology, The Ohio State University
  • Andrew Leber
    Department of Psychology, The Ohio State University
Journal of Vision September 2015, Vol.15, 1050. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Bo-Yeong Won, Andrew Leber; Generalizability of implicit spatial learning depends on task difficulty. Journal of Vision 2015;15(12):1050.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Implicit learning allows humans to exploit visual regularities without explicit awareness. For such a mechanism to provide maximal utility, it should be neither too stimulus-specific nor over-generalized. Some previous studies report task-general learning, while others report task-specific learning, and it is unknown why these results differ. What determines the generalizability of implicit spatial learning? Here, we manipulated task difficulty as a novel test of this question. We employed a probability cueing manipulation, in which search targets are more frequently presented in one “rich” quadrant of the display than in the remaining “sparse” quadrants. Previous work has shown observers to gradually bias their spatial attention toward the rich quadrant, yielding faster responses to targets in that quadrant. In this study, during an initial training phase, easy and difficult visual search trials were intermixed, and each had their own rich quadrant. Specifically, targets appeared more often in one quadrant on easy trials (“easy rich quadrant”) and in another quadrant on difficult trials (“difficult rich quadrant”). During the test phase, we transferred the observers to an intermediate difficulty search task, in which targets appeared equally frequently in each quadrant. We found the bias toward the easy rich quadrant not only on easy trials but also on difficult trials, whereas the bias toward the difficult rich quadrant appeared only on difficult trials. Moreover, the bias toward the easy rich quadrant – but not the difficult rich quadrant – generalized to the intermediate difficulty trials during test. Further experiments showed that the failure to generalize from the difficult task was not due to either weak probability cueing (Experiment 2) or interference between the two simultaneous rich quadrants (Experiment 3). These findings accord well with learning theories that predict asymmetric generalization based on task difficulty and extend those theories to the domain of implicit spatial learning.

Meeting abstract presented at VSS 2015


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.