September 2015
Volume 15, Issue 12
Free
Vision Sciences Society Annual Meeting Abstract  |   September 2015
Binocular integration of pattern motion signals in the human oculomotor system
Author Affiliations
  • Christian Quaia
    Laboratory of Sensorimotor Research, National Eye Institute, NIH, DHHS
  • Lance Optican
    Laboratory of Sensorimotor Research, National Eye Institute, NIH, DHHS
  • Bruce Cumming
    Laboratory of Sensorimotor Research, National Eye Institute, NIH, DHHS
Journal of Vision September 2015, Vol.15, 1185. doi:https://doi.org/10.1167/15.12.1185
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Christian Quaia, Lance Optican, Bruce Cumming; Binocular integration of pattern motion signals in the human oculomotor system. Journal of Vision 2015;15(12):1185. https://doi.org/10.1167/15.12.1185.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Psychophysical and neurophysiological evidence indicates that the computation of pattern motion is partially, but not completely, disrupted when two drifting gratings forming a plaid are presented dichoptically (i.e., one to each eye, Tailby, Majaj and Movshon, 2010). Here we set out to quantify the extent of this disruption along the visual pathway that underlies short-latency reflexive eye movements in humans. Unikinetic plaids, formed by summing a drifting and a static sinusoidal grating of different orientations, elicit short-latency ocular following responses (OFRs) that can be used to study pattern motion computations (Masson and Castet 2002). In our experiments we combined a vertical drifting (20 Hz) grating and a static oblique grating tilted 45 deg away from vertical (both gratings had a spatial frequency of 0.25 cpd). With this configuration, the magnitude of the vertical component of the OFR is a direct proxy for the strength of the pattern motion signal. We used three stimulus configurations: Binocular - both eyes saw the unikinetic plaid; Monocular - unikinetic plaid in one eye, gray background in the other; Dichoptic - drifting grating in one eye, static grating in the other. We measured, in three subjects, the strength of the vertical component of the OFRs induced by these stimuli. On average, the pattern motion signal for the dichoptic condition was 30% of that generated under binocular presentation, and 52% of that induced by the monocular stimulus. From this latter number we infer that the pattern motion computation is evenly split amongst monocular and binocular pathways, and it is thus likely to rely on computations occurring in primary visual cortex, where both monocular and binocular neurons are present.

Meeting abstract presented at VSS 2015

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×