August 2016
Volume 16, Issue 12
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2016
Information processing dynamics in human category-selective fusiform gyrus
Author Affiliations
  • Avniel Ghuman
    Neurological Surgery, University of Pittsburgh
  • Yuanning Li
    Neurological Surgery, University of Pittsburgh
  • Elizabeth Hirshorn
    Learning Research and Development Center, University of Pittsburgh
  • Michael Ward
    Neurological Surgery, University of Pittsburgh
  • Julie Fiez
    Center for the Neural Basis of Cognition, Univeristy of Pittsburgh
  • Mark Richardson
    Neurological Surgery, University of Pittsburgh
Journal of Vision September 2016, Vol.16, 254. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Avniel Ghuman, Yuanning Li, Elizabeth Hirshorn, Michael Ward, Julie Fiez, Mark Richardson; Information processing dynamics in human category-selective fusiform gyrus. Journal of Vision 2016;16(12):254.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

The fusiform gyrus contains category-selective patches that are critical for visual recognition with damage to these patches leading to category-selective impairments in object recognition, such as acquired alexia and prosopagnosia. However, many gaps remain in our understanding of the dynamic role the fusiform plays in contributing to multiple stages of category-specific information processing. To assess the information processing dynamics of the fusiform, here we report results from 7 subjects with intracranial electrodes placed directly on word selective (2 subjects) or face selective (5 subjects) fusiform gyrus (the "visual word form area [VWFA]" and "fusiform face area [FFA]" respectively). Specifically, we use multivariate machine learning methods in conjunction with multiple face and word processing paradigms to uncover common neurodynamic information processing principles of category-selective fusiform gyrus. The results show strong decoding accuracy (d' = 1.5-3.5 across subjects) for faces and words in the FFA and VWFA respectively, first becoming statistically significant between 50-100 ms and peaking between 150-200 ms. Next we examined the dynamics of within category decoding. For words significant decoding was seen in both subjects between approximately 150-300 ms wherein visually similar words could not be decoded from one another, but dissimilar words could be decoded (organized by orthographic similarity). There was a later phase between approximately 250-500 ms where even orthographically similar words could be significantly decoded from one another (individual-level representation). For faces significant expression-invariant decoding was seen in each subject in the same 250-500 ms time frame. The neural response for faces was organized by facial feature similarity, emphasizing the role of the eyes and mouth in face individuation. Taken together, these results suggest a multi-stage information processing dynamic wherein the representation in category-selective fusiform gyrus evolves from a coarse category-level representation to an invariant and highly detailed individual representation over the course of 500 ms.

Meeting abstract presented at VSS 2016


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.