August 2016
Volume 16, Issue 12
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2016
Feature-coding transitions to conjunction-coding with progression through visual cortex
Author Affiliations
  • Rosemary Cowell
    Psychological and Brain Sciences, University of Massachusetts Amherst
  • John Serences
    Department of Psychology, University of California San Diego
Journal of Vision September 2016, Vol.16, 755. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Rosemary Cowell, John Serences; Feature-coding transitions to conjunction-coding with progression through visual cortex. Journal of Vision 2016;16(12):755.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Evidence from electrophysiological studies in animals suggests that the visual object processing pathway in cortex analyzes incoming information in a staged, hierarchical manner. Neurons in early stages of the pathway are tuned to simple visual features (e.g., a line of a particular orientation) whereas neurons in later stages are selective for increasingly complex stimulus attributes (e.g., a collection of lines corresponding to a complex shape). It is widely assumed that feature-coding dominates in early visual cortex whereas later visual cortices employ conjunction-coding in which whole object representations are different from the sum of their simple-feature parts. However, most electrophysiological and neuroimaging studies have measured only a small span of the cortical hierarchy or manipulated stimulus properties at only one level of visual complexity. No study in humans has simultaneously demonstrated that putative object-codes in higher visual cortex cannot be accounted for by feature-coding and that putative feature-coding in early visual cortex is not equally well characterized as an object-code. We present a novel method that employs multivariate analysis of functional brain imaging data to measure feature-coding and conjunction-coding directly and pit them against each other throughout visual cortex. The results provide the first direct demonstration of a continuous gradient from feature-coding in primary visual cortex to conjunction-coding in inferior temporal and posterior parietal cortices. This novel method enables the use of classifier analyses along with experimentally controlled visual stimuli to investigate population-level feature- and conjunction-codes throughout human cortex.

Meeting abstract presented at VSS 2016


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.