Abstract
For some scientific questions, highly reduced stimuli are king. Sine waves. Gabors. Points of light. When paired with rigorous theory, such stimuli provide scalpel-like tools of unparalleled precision for dissecting sensory mechanisms. However, even the most disciplined mind is wont at times to turn to questions of subjective visual appearance. Questions like what makes silk look soft?, why does honey look runny? or how can I tell wax is translucent?. In order to study such complex phenomena (fluid flow, subsurface scattering, etc.), there simply is no alternative to using real or photorealistic stimuli, as these remain the only extant stimuli that elicit the relevant percepts. I will briefly describe a couple of my own experiments using computer simulations of complex physical processes to study the visual appearance of materials and the underlying visual computations. I will discuss both boons and perils of using computer simulations to study perception. On the one hand, the phenomena are horrendously complex and we still lack experimental methods for bridging the gap between discrimination and subjective appearance. On the other hand, simulations provide an unprecedented level of parametric control over complex processes, as well as access to the ground truth state of the scene (shape, motion, ray paths, etc). Finally, I will argue that using and analysing simulations is a necessary step in the development of more focussed, reduced stimuli that will also evoke the requisite phenomenology: one day we may have the equivalent of Gabors for studying complex visual appearance.
Meeting abstract presented at VSS 2016