August 2016
Volume 16, Issue 12
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2016
Predicting human performance in fundamental visual tasks with natural stimuli
Author Affiliations
  • Johannes Burge
    Department of Psychology, Neuroscience Graduate Group, University of Pennsylvania
Journal of Vision September 2016, Vol.16, 4. doi:https://doi.org/10.1167/16.12.4
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Johannes Burge; Predicting human performance in fundamental visual tasks with natural stimuli. Journal of Vision 2016;16(12):4. https://doi.org/10.1167/16.12.4.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Understanding how vision works under natural conditions is a fundamental goal of vision science. Vision research has made enormous progress toward this goal by probing visual function with artificial stimuli. However, evidence is mounting that artificial stimuli may not be fully up to the task. The field is full of computational modelsfrom retina to behaviorthat beautifully account for performance with artificial stimuli, but that generalize poorly to arbitrary natural stimuli. On the other hand, research with natural stimuli is often criticized on the grounds that natural signals are too complex and insufficiently controlled for results to be interpretable. I will describe recent efforts to develop methods for using natural stimuli without sacrificing computational and experimental rigor. Specifically, I will discuss how we use natural stimuli, techniques for dimensionality reduction, and ideal observer analysis to tightly predict human estimation and discrimination performance in three tasks related to depth perception: binocular disparity estimation, speed estimation, and motion through depth estimation. Interestingly, the optimal processing rules for processing natural stimuli also predict human performance with classic artificial stimuli. We conclude that properly controlled studies with natural stimuli can complement studies with artificial stimuli, perhaps contributing insights that more traditional approaches cannot.

Meeting abstract presented at VSS 2016

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×