September 2017
Volume 17, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   August 2017
Priming and Adaptation in Biological Motion Perception
Author Affiliations
  • Hongjing Lu
    Department of Psycholology, UCLA
    Department of Statistics, UCLA
  • Yujia Peng
    Department of Psycholology, UCLA
Journal of Vision August 2017, Vol.17, 67. doi:https://doi.org/10.1167/17.10.67
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Hongjing Lu, Yujia Peng; Priming and Adaptation in Biological Motion Perception. Journal of Vision 2017;17(10):67. https://doi.org/10.1167/17.10.67.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Recent perceptual experiences can alter visual perception in two distinct ways: priming and adaptation-induced aftereffects. While priming typically leads to facilitation effects, associated with faster and/or more accurate responses to the same stimulus, adaptation results in repulsive aftereffects, revealed by slower and/or less accurate responses to the same stimulus. In the present study, we examined priming and adaptation effects in biological motion perception, and their interactions with part/whole body structure. On each trial, participants first viewed a walking action (S1) presented as either the whole-body motion, or as subparts of body movements (bipedal leg movements, bilateral arm-leg movements with the same motion direction, and unilateral arm-leg movements with the opponent motions). The S1 stimuli were presented in the forms of point-light or skeleton walkers for either a short duration (100 ms) or a long duration (500 ms). After the presentation of S1, a point-light whole-body walker was shown briefly as the second stimulus (S2) for 200 ms. Participants were asked to judge the facing direction of the walker in S2. Results showed that with a short duration of S1 (100 ms), both whole-body and subpart movements in S1 elicited robust priming effects but with different facilitation magnitudes. For subpart movements, bipedal feet movements and bilateral arm-leg movements showed stronger priming effects than did unilateral arm-leg movements, suggesting that some subparts of body movements may be encoded in the hierarchical representation of actions. When the S1 stimulus was presented for a long duration (500 ms), the whole-body skeleton display yielded an adaptation effect, and no other conditions yielded aftereffect, suggesting that biological motion adaptation depends on the global whole-body representation of actions. These findings also indicate that a transition from priming to adaptation depends on the temporal duration of the first stimulus.

Meeting abstract presented at VSS 2017

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×