September 2017
Volume 17, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   August 2017
Duration thresholds for motion discrimination of complex stimuli show non-linear interactions between motion sensors
Author Affiliations
  • Raúl Luna
    Faculty of Psychology. Complutense University of Madrid, Madrid, 28223, Spain
  • Ignacio Serrano-Pedraza
    Faculty of Psychology. Complutense University of Madrid, Madrid, 28223, Spain
    Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Journal of Vision August 2017, Vol.17, 604. doi:https://doi.org/10.1167/17.10.604
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Raúl Luna, Ignacio Serrano-Pedraza; Duration thresholds for motion discrimination of complex stimuli show non-linear interactions between motion sensors. Journal of Vision 2017;17(10):604. https://doi.org/10.1167/17.10.604.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Previous research has shown that motion direction discrimination for complex stimuli composed of fine and coarse scales is impaired when both components move together at the same speed (Serrano-Pedraza, Goddard & Derrington, JoV, 2007). This increment of duration thresholds for motion discrimination was higher if the contrast of the coarse-scale component was lower than the contrast of the fine-scale component (Luna & Serrano-Pedraza, 2016, VSS). Here we performed two experiments where we used Bayesian staircases to measure duration thresholds for motion discrimination. In the first experiment we tested whether the relative phase of coarse- and fine-scale components (vertical-Gabor patches) had an effect on duration thresholds that could explain the impairment in motion discrimination. In the second experiment we tested complex stimuli composed of two Gabor patches of different spatial frequencies and same contrast (28%). Two types of stimuli were used: simple horizontally drifting vertical-Gabor patches and complex vertical-Gabor patches resulting from the addition of two Gabor patches of different spatial frequencies. We tested spatial frequencies ranging from 0.25 to 6c/deg and 20 different combinations between them. Results from the first experiment show that duration thresholds were independent of the relative phase of the components of the complex stimuli. The second experiment shows that a) duration thresholds decrease with increasing spatial frequency from 0.5 to 6c/deg; b) duration thresholds for complex stimuli were always larger than those for the higher spatial frequency component; and c) when the lowest frequency of the pair was 0.25c/deg, duration thresholds were shorter than for 0.25c/deg presented alone. Our results are in agreement with previous results that suggest a nonlinear interaction between motion sensors tuned to coarse and fine scales.

Meeting abstract presented at VSS 2017

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×