September 2017
Volume 17, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   August 2017
We know what we can see - peripheral visibility of search targets shapes eye movement behavior in natural scenes
Author Affiliations
  • Lars Rothkegel
    Department of Psychology & Cognitive Sciene Program, University of Potsdam
  • Heiko Schütt
    Department of Psychology & Cognitive Sciene Program, University of Potsdam
    Neural Information Processing Group, University of Tübingen, Germany
  • Hans Trukenbrod
    Department of Psychology & Cognitive Sciene Program, University of Potsdam
  • Felix Wichmann
    Neural Information Processing Group, University of Tübingen, Germany
    Bernstein Center for Computational Neuroscience, Tübingen, Germany
  • Ralf Engbert
    Department of Psychology & Cognitive Sciene Program, University of Potsdam
Journal of Vision August 2017, Vol.17, 1120. doi:https://doi.org/10.1167/17.10.1120
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Lars Rothkegel, Heiko Schütt, Hans Trukenbrod, Felix Wichmann, Ralf Engbert; We know what we can see - peripheral visibility of search targets shapes eye movement behavior in natural scenes. Journal of Vision 2017;17(10):1120. https://doi.org/10.1167/17.10.1120.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Influences of target features on fixation locations and search durations have been widely studied. What happens to properties of the eyes' scanpath when looking for different targets has not been investigated as thoroughly. One important target aspect is how far into the periphery it is detectable, which can be varied by changing its spatial frequency content. Here we show that human participants adapt their eye movement behavior immediately when searching for different targets in natural scenes. In our study, participants searched natural scenes for 6 artificial targets with different spatial frequency content. High spatial frequency targets led to shorter fixation durations and smaller saccade amplitudes than low spatial frequency targets. The effect of the smaller saccade amplitudes appeared from the first of eight experimental sessions, without training, persisted throughout all sessions and disappeared when subjects were not told which of the targets to search for. Fixation durations were shorter for high spatial frequency targets after one training session, also persisted throughout all subsequent sessions and disappeared when subjects were not told which of the targets to search for. The differences in eye movement patterns between low and high spatial frequency targets led to longer search times to find the high frequency targets, but the probability to find the target within 10 seconds was unchanged. As high spatial frequency targets can not be detected far into the periphery, it is adaptive to choose a scanning strategy with shorter fixation durations and shorter saccade amplitudes when searching for high spatial frequency targets. Our results suggest that humans are capable to adequately adapt their eye movement behavior instantaneously according to the spatial frequency content of the target, implicitly adapting to how far from the fovea targets can be detected.

Meeting abstract presented at VSS 2017

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×