December 2017
Volume 17, Issue 15
Open Access
OSA Fall Vision Meeting Abstract  |   December 2017
Predicting the luminosity thresholds for chromatic stimuli by the optimal color hypothesis
Author Affiliations
  • Keiji Uchikawa
    Research Institute for Multimodal Sensory Science, Kanagawa
  • Kazuho Fukuda
    Department of Information Design, Kogakuin Univeristy
  • Takuma Morimoto
    Department of Experimental Psychology, University of Oxford
Journal of Vision December 2017, Vol.17, 50-51. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Keiji Uchikawa, Kazuho Fukuda, Takuma Morimoto; Predicting the luminosity thresholds for chromatic stimuli by the optimal color hypothesis. Journal of Vision 2017;17(15):50-51. doi:

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

We previously developed the optimal color hypothesis to estimate an illuminant in a scene. It assumes that the visual system has a priori knowledge about optimal colors under different illuminants and selects the optimal color luminance-shell that gives the best-fit to the luminance distribution of chromatic stimuli in a scene. The peak of the selected optimal color luminance-shell corresponds to the illuminant color in the scene. This hypothesis has well explained color constancy in various stimulus conditions. This study aimed to verify the validity of the hypothesis using luminosity thresholds for chromatic stimuli. The thresholds were obtained in our previous experiments, where an observer adjusted the luminance of a test stimulus until it appeared to be brighter than the upper limit of the surface mode and dimmer than the lower limit of the luminosity mode (luminosity threshold). A circular test stimulus was presented at the center of surrounding stimuli on a CRT monitor. We selected 15 reflectances for the test stimulus and 180 reflectances for the surrounding stimuli from Brown's 574 spectral reflectance data of natural objects. We employed three luminance-chromaticity distributions (normal, flat, and valley) of the surrounding stimuli and three color temperatures (3000K, 6500K, and 20000K) of the illuminant. It was shown that the optimal color hypothesis well predicted the luminosity threshold function of the test stimulus chromaticity in terms of its shape and the peak regardless of the luminance-chromaticity distributions of surrounding stimuli and color temperatures of the illuminant.


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.