September 2018
Volume 18, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2018
Investigating the recognition of static and dynamic facial expressions of emotion in MCI patients
Author Affiliations
  • Anne-Raphaelle Richoz
    Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Fribourg, Switzerland
  • Junpeng Lao
    Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Fribourg, Switzerland
  • Martino Ceroni
    Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Fribourg, Switzerland
  • Leonardo Sacco
    Ospedale Regionale di Lugano, Servizio di Neurologia, Switzerland
  • Riccardo Pignatti
    Ospedale Regionale di Lugano, Servizio di Neurologia, Switzerland
  • Roberto Caldara
    Eye and Brain Mapping Laboratory (iBMLab), Department of Psychology, University of Fribourg, Fribourg, Switzerland
Journal of Vision September 2018, Vol.18, 926. doi:10.1167/18.10.926
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Anne-Raphaelle Richoz, Junpeng Lao, Martino Ceroni, Leonardo Sacco, Riccardo Pignatti, Roberto Caldara; Investigating the recognition of static and dynamic facial expressions of emotion in MCI patients. Journal of Vision 2018;18(10):926. doi: 10.1167/18.10.926.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Unlike static images of facial expressions routinely used in most experiments, natural expressions unfold over time, providing observers with richer and ecologically more valid signals. Our previous findings revealed greater recognition accuracy for dynamic expressions in young and elderly populations (Richoz et al., 2017), an advantage driven by a suboptimal performance for static images in older adults. Interestingly, it has also been shown that patients suffering from mild cognitive impairment (MCI) are impaired for the recognition of static facial expressions. Yet, the very nature of such a deficit and its presence for dynamic faces remains to be clarified. To this aim, we tested a group of MCI patients and an age-matched healthy control group while they performed a facial expression recognition (FER) task of the six basic expressions in three conditions: static, shuffled (temporally randomized frames) and dynamic (Gold et al., 2013). We observed greater and comparable FER accuracy for dynamic vs. static expressions in MCI patients and the controls. Crucially, however, the MCI patients were significantly more impaired in the decoding of the static expressions of fear, disgust and anger compared to the controls. While static faces may be more sensitive to detect expression recognition deficits in MCI patients, the results obtained in the dynamic condition suggest that their FER ability in their daily life is spared. The deficit in the MCI patients might thus selectively relate to a suboptimal functioning of the ventral face-selective network, which is dedicated to static face processing, while dynamic face processing involves a diffuse network of brain regions. Altogether, these findings not only underline the critical importance of assessing FER with dynamic faces in clinical populations, but also pave the way for the development of future diagnostic tools that may link FER deficits with static images to specific facets of cognitive decline.

Meeting abstract presented at VSS 2018

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×