September 2018
Volume 18, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2018
Measuring the Effect of Event Boundaries on Visuospatial Attention During Event Perception
Author Affiliations
  • Ryan Ringer
    Department of Psychological Sciences, Kansas State University
  • Zachary Throneburg
    Department of Psychological Sciences, Kansas State University
  • Bretney Belvill
    Department of Psychological Sciences, Kansas State University
  • Amber Craig
    Department of Psychological Sciences, Kansas State University
  • Sarah Albert
    Department of Psychological Sciences, Kansas State University
  • Nicole Bartel
    Department of Psychological Sciences, Kansas State University
  • Anna Cook
    Department of Psychological Sciences, Kansas State University
  • Lester Loschky
    Department of Psychological Sciences, Kansas State University
Journal of Vision September 2018, Vol.18, 1024. doi:10.1167/18.10.1024
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Ryan Ringer, Zachary Throneburg, Bretney Belvill, Amber Craig, Sarah Albert, Nicole Bartel, Anna Cook, Lester Loschky; Measuring the Effect of Event Boundaries on Visuospatial Attention During Event Perception. Journal of Vision 2018;18(10):1024. doi: 10.1167/18.10.1024.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Event Segmentation Theory posits that efficient perception and memory of real-world events is enabled by breaking events into smaller "chunks" of information. These chunks of information exist at fine and coarse-grained levels, and are influenced by bottom-up and top-down event characteristics, respectively. Event boundaries represent transitions between event segments, signifying when meaningful units of information have ended. Prior research suggests that covert attention is impaired during event boundaries, however where and when these changes in attention occur are still unclear. Additionally, some eye-movement research suggests the ambient processing mode occurs at event boundaries, while focal attentional processing occurs within events. This study measured covert attentional breadth with gaze-contingent presentations of Gabor patches while participants watched videos of real-world events. Gabors were presented at 0, 4.5, or 9 degrees from the fovea, and were time-locked to appear at times before and after event boundaries, as well as non-boundary times. Furthermore, the Gabor patches were m-scaled in size and SOAs (processing time) were thresholded to ensure equal performance across the visual field in the absence of attentional modulation. The results demonstrated unique effects of coarse versus fine event boundaries on attention. For coarse event boundaries, attention was broadly distributed before the boundary and rapidly narrowed after the boundary passed. Conversely, for fine event boundaries, attention was weakly tunneled prior to the boundary, and slightly broadened after the boundary. Non-boundary (i.e., control) Gabor presentations revealed that attention was strongly tunneled during the middle of the event. Thus, the data supports the hypothesis that attention shifts from ambient to focal processing from boundary to non-boundary event periods. Additionally, coarse event boundaries might also reflect anticipatory, top-down guidance of attention (e.g., goal monitoring, prospective memory), whereas fine event boundaries may reflect reactive, bottom-up capture of attention (e.g., motion, object manipulation, etc.).

Meeting abstract presented at VSS 2018

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×