Abstract
Bottom-up saliency is often cited as a factor driving the choice of fixation locations of human observers, based on the (partial) success of saliency models to predict fixation densities in free viewing. However, these observations are only weak evidence for a causal role of bottom-up saliency in natural viewing behaviour. To test bottom-up saliency more directly, we analyse the performance of a number of saliency models---including our own saliency model based on our recently published model of early visual processing (Schütt & Wichmann, 2017, JoV)---as well as the theoretical limits for predictions over time. On free viewing data our model performs better than classical bottom-up saliency models, but worse than the current deep learning based saliency models incorporating higher-level information like knowledge about objects. However, on search data all saliency models perform worse than the optimal image independent prediction. We observe that the fixation density in free viewing is not stationary over time, but changes over the course of a trial. It starts with a pronounced central fixation bias on the first chosen fixation, which is nonetheless influenced by image content. Starting with the 2nd to 3rd fixation, the fixation density is already well predicted by later densities, but more concentrated. From there the fixation distribution broadens until it reaches a stationary distribution around the 10th fixation. Taken together these observations argue against bottom-up saliency as a mechanistic explanation for eye movement control after the initial orienting reaction in the first one to two saccades, although we confirm the predictive value of early visual representations for fixation locations. The fixation distribution is, first, not well described by any stationary density, second, is predicted better when including object information and, third, is badly predicted by any saliency model in a search task.
Meeting abstract presented at VSS 2018