Abstract
Real-world movements, ranging from intercepting prey to hitting a ball, require rapid prediction of an object's trajectory from a brief glance at its motion. The decision whether, when and where to intercept is based on the integration of current visual evidence, such as the perception of a ball's direction, spin and speed. However, perception and decision-making are also strongly influenced by past sensory experience. We use smooth pursuit eye movements as a model system to investigate how the brain integrates sensory evidence with past experience. This type of eye movement provides a continuous read-out of information processing while humans look at a moving object and make decisions about whether and how to interact with it. I will present results from two different series of studies: the first utilizes anticipatory pursuit as a means to understand the temporal dynamics of prediction, and probes the modulatory role of expectations based on past experience. The other reveals the benefit of smooth pursuit itself, in tasks that require the prediction of object trajectories for perceptual estimation and manual interception. I will conclude that pursuit is both an excellent model system for prediction, and an important contributor to successful prediction of object motion.
Meeting abstract presented at VSS 2018