July 2019
Volume 19, Issue 8
Open Access
OSA Fall Vision Meeting Abstract  |   July 2019
Ultrafast laser induced retinal degeneration model in macaque using adaptive optics
Author Affiliations
  • Kamal Dhakal
    Center for Visual Science, University of Rochester
  • Sarah Walters
    Institute of Optics, University of Rochester
  • Christina Schwarz
    Center for Visual Science, University of Rochester
  • Jennifer Strazzeri
    Flaum Eye Institute, University of Rochester Medical Center
  • Brittany Bateman
    Flaum Eye Institute, University of Rochester Medical Center
  • Ebrahim Aboualizadeh
    Center for Visual Science, University of Rochester
  • Jennifer Hunter
    Flaum Eye Institute, University of Rochester Medical Center
  • David Williams
    Center for Visual Science, University of Rochester
  • William Merigan
    Flaum Eye Institute, University of Rochester Medical Center
Journal of Vision July 2019, Vol.19, 14. doi:https://doi.org/10.1167/19.8.14
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Kamal Dhakal, Sarah Walters, Christina Schwarz, Jennifer Strazzeri, Brittany Bateman, Ebrahim Aboualizadeh, Jennifer Hunter, David Williams, William Merigan; Ultrafast laser induced retinal degeneration model in macaque using adaptive optics. Journal of Vision 2019;19(8):14. https://doi.org/10.1167/19.8.14.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The promise of vision restoration in human remains challenging due to the absence of a retinal degeneration model in non-human primates. There has been tremendous progress in vision restoration using stem cell therapy and optogenetics in rodents which are not ideal models for human-like vision. Here we report a noninvasive and axially targeted retinal degeneration model in macaque using an ultrafast laser and adaptive optics. A femtosecond laser (720 nm, 55 fs, 80 MHz) was directed through the anesthetized macaque’s pupil using an adaptive optics scanning light ophthalmoscope (AOSLO). The focal plane of laser was adjusted close to the outer nuclear layer with the help of adaptive optics. Laser pulse energy and irradiance duration were varied keeping the scanning area fixed. The lesions were monitored over 6 months using optical coherence tomography, confocal SLO, and AOSLO imaging to assess the extent of the damage.

Laser pulse energy between 1 μJ- 2 μJ for a duration of 1.5 μs selectively ablates photoreceptors within the scanning area leaving retinal layers above and below and vasculature structure relatively intact whereas laser pulse energy < 1 μJ did not show any visible damage and laser pulse energy >2 μJ produced severe collateral injury. These results show that ultrafast exposures can produce highly localized, selective damage to photoreceptors, providing a useful primate model for restoring vision.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×