September 2019
Volume 19, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2019
The Intrinsic Constraint Model: A non-Euclidean approach to 3D shape perception from multiple image signals
Author Affiliations & Notes
  • Jovan T Kemp
    Cognitive, Linguistic, and Psychological Sciences, Brown University
  • Evan Cesanek
    Cognitive, Linguistic, and Psychological Sciences, Brown University
  • Fulvio Domini
    Cognitive, Linguistic, and Psychological Sciences, Brown University
Journal of Vision September 2019, Vol.19, 16a. doi:https://doi.org/10.1167/19.10.16a
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Jovan T Kemp, Evan Cesanek, Fulvio Domini; The Intrinsic Constraint Model: A non-Euclidean approach to 3D shape perception from multiple image signals. Journal of Vision 2019;19(10):16a. https://doi.org/10.1167/19.10.16a.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

How does the visual system derive estimates of 3D shape properties? Typically, models assume that sources of depth information such as texture gradients and binocular disparities are processed independently to produce a set of unbiased estimates sharing a common spatial metric. Under this assumption, the independent estimates can be optimally combined into a unified, accurate depth representation via Maximum Likelihood Estimation (MLE). However, this approach tacitly assumes that the visual system has learnt a veridical mapping between the individual image signals and the 3D properties they encode. An alternate approach, termed the Intrinsic Constraint (IC) model, does not require this assumption and instead considers raw image signals as vector components of a multidimensional signal. Critically, as long as the raw signals are proportional to physical depth, the vector magnitude will be as well. Assuming a fixed, but generally non-veridical scaling of the image signals (a normalization step), the IC model directly maps for any mixture of signals: (1) a vector magnitude to a perceived depth and (2) a fixed change in vector magnitude to a Just-Noticeable Difference (JND). We tested these predictions in two related studies. In the first, we asked participants to adjust a 2D probe to indicate the perceived depth of stimuli with simulated depths defined by disparity only, texture only, or disparity and texture together. In the second, participants adjusted the depths of cue-conflict stimuli with five fixed conflict ratios (texture depth relative to disparity depth: 0, 0.41, 1, 2.41, ∞) until all appeared equally deep. In both studies, JNDs were then measured for personalized sets of stimuli that evoked the same perceived depth. The results were incompatible with the assumption of accurate depth perception central to the MLE approach, while the IC model fared well in predicting the data of each task without free parameters.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×