September 2019
Volume 19, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2019
Monitoring and proactive control of visual search speed-accuracy tradeoff by supplementary eye field
Author Affiliations & Notes
  • Thomas Reppert
    Department of Psychology, Vanderbilt University
    Center for Integrative and Cognitive Neuroscience, Vanderbilt University
    Vanderbilt Vision Research Center. Vanderbilt University
  • Richard P Heitz
    Department of Psychology, Vanderbilt University
    Center for Integrative and Cognitive Neuroscience, Vanderbilt University
    Vanderbilt Vision Research Center. Vanderbilt University
  • Jeffrey D Schall
    Department of Psychology, Vanderbilt University
    Center for Integrative and Cognitive Neuroscience, Vanderbilt University
    Vanderbilt Vision Research Center. Vanderbilt University
Journal of Vision September 2019, Vol.19, 144c. doi:https://doi.org/10.1167/19.10.144c
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Thomas Reppert, Richard P Heitz, Jeffrey D Schall; Monitoring and proactive control of visual search speed-accuracy tradeoff by supplementary eye field. Journal of Vision 2019;19(10):144c. doi: https://doi.org/10.1167/19.10.144c.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

Neurophysiological mechanisms of speed-accuracy tradeoff (SAT) have only recently been investigated. Previous studies with macaque monkeys showed that SAT of inefficient visual search was accomplished by modulation of salience map evidence representations in frontal eye field (FEF) and superior colliculus (SC). Saccade initiation occurred when movement activity was either reduced or equivalent in Accurate-cued relative to Fast-cued trials. Targeting errors occurred when salience neurons in the FEF and the SC treated distractors as targets. Here, we report new observations about SAT performance and neurophysiological results from the supplementary eye field (SEF), located in medial frontal cortex, which contributes to executive control of gaze behavior but not to saccade target selection. In two monkeys, we found natural preference for quick responding, with more choice inaccuracies. On trials with choice errors, the monkeys often executed a post-primary saccade to the foregone target, which was generated later in the Accurate than the Fast condition. SEF neurons signaled choice errors, and the magnitude of this signal predicted whether the post-primary saccade was corrective in nature. In the Accurate condition, when slower responding was required, the rate of choice errors decreased, but the rate of premature timing errors increased. After timing errors, SEF neurons signaled negative reward prediction error at the time of expected reward. We assessed the distribution of signaling of choice errors and reward prediction errors across the sample of SEF neurons. Some neurons signaled both types of error, whereas others signaled either choice error or reward prediction error. We also found evidence for proactive control of response time. Baseline activity was a strong predictor of response time in both Fast and Accurate conditions. Taken together, these results indicate that SEF may be a source of the modulation observed in FEF and SC and inform new models of distributed decision making.

Acknowledgement: This work was supported by NEI (F32-EY019851, T32-EY07135, R01-EY019882, and R01-EY08890), and by Robin and Richard Patton through the E. Bronson Ingram Chair in Neuroscience. 
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×