September 2019
Volume 19, Issue 10
Open Access
Vision Sciences Society Annual Meeting Abstract  |   September 2019
Temporal consequences of spatial acuity reduction
Author Affiliations & Notes
  • Pawan Sinha
    Brain and Cognitive Sciences, MIT
  • Sidney P Diamond
    Brain and Cognitive Sciences, MIT
  • Frank Thorn
    Brain and Cognitive Sciences, MIT
  • Sharon Gilad-Gutnick
    Brain and Cognitive Sciences, MIT
  • Shlomit Ben-Ami
    Brain and Cognitive Sciences, MIT
  • Sruti Raja
    Brain and Cognitive Sciences, MIT
Journal of Vision September 2019, Vol.19, 206c. doi:
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Pawan Sinha, Sidney P Diamond, Frank Thorn, Sharon Gilad-Gutnick, Shlomit Ben-Ami, Sruti Raja; Temporal consequences of spatial acuity reduction. Journal of Vision 2019;19(10):206c.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

The genesis of this work lies in the subjective experience of some of us with strong myopia. Unsurprisingly, without our glasses the world looks blurry. Less intuitively, though, the dynamics also seem to undergo a change; the world appears to move more ‘smoothly’. Thus, a purely spatial optical transformation seemingly has temporal consequences. To formally test this anecdotal observation, we ask how convolution with a spatial Gaussian of individual images in a video-stack impacts the stack’s temporal structure. Our approach involves computing spatial and temporal Fourier spectra of several short natural videos in their original form, as well as after subjecting them to multiple levels of spatial Gaussian blur. The spatial spectrum corresponds to the mean radial-average of the 2DFFT of all images in the stack. The temporal spectrum corresponds to the mean of the 1DFFT of several single pixel cores extending through the entire depth of the stack. Comparing the spatial and temporal spectra reveals a very consistent result: For every natural video tested, spatial blurring leads to a progressive reduction in power in high spatial-, as well as in high temporal-frequencies. This straightforward and unequivocal result has several interesting implications. First, it suggests that uncorrected refractive errors lead not only to the visual system being deprived of high spatial frequency content, but also high temporal frequencies. Such deprivation would lead to deficits in high-frequency spatial as well as temporal visual processing. Indeed, the few studies that have investigated temporal aspects of amblyopia have found precisely this result. Second, it provides an explanatory account for why severe spatial degradation leads to the development of nystagmus; the uncontrolled eye-movements may serve to endogenously enhance temporal stimulation. Finally, it makes the surprising prediction that exposure to rapid temporal flicker may enhance spatial acuity. Recent reports corroborate this prediction.

Acknowledgement: NEI R01 EY020517 

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.