October 2020
Volume 20, Issue 11
Open Access
Vision Sciences Society Annual Meeting Abstract  |   October 2020
Causal evidence for parietal lobule dynamics supporting intention readout
Author Affiliations & Notes
  • Stefano Panzeri
    Istituto Italiano di Tecnologia, Genoa and Rovereto, Italy
  • Jean-François Patri
    Istituto Italiano di Tecnologia, Genoa and Rovereto, Italy
  • Atesh Koul
    Istituto Italiano di Tecnologia, Genoa and Rovereto, Italy
  • Marco Soriano
    Istituto Italiano di Tecnologia, Genoa and Rovereto, Italy
    University of Turin, Turin, Italy
  • Martina Valente
    Istituto Italiano di Tecnologia, Genoa and Rovereto, Italy
    University of Trento, Rovereto, Italy
  • Alessio Avenanti
    University of Bologna, Cesena, Italy
    Universidad Catolica del Maule, Talca, Chile
  • Andrea Cavallo
    Istituto Italiano di Tecnologia, Genoa and Rovereto, Italy
    University of Turin, Turin, Italy
  • Cristina Becchio
    Istituto Italiano di Tecnologia, Genoa and Rovereto, Italy
  • Footnotes
    Acknowledgements  This work received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754490.
Journal of Vision October 2020, Vol.20, 1098. doi:https://doi.org/10.1167/jov.20.11.1098
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Stefano Panzeri, Jean-François Patri, Atesh Koul, Marco Soriano, Martina Valente, Alessio Avenanti, Andrea Cavallo, Cristina Becchio; Causal evidence for parietal lobule dynamics supporting intention readout. Journal of Vision 2020;20(11):1098. https://doi.org/10.1167/jov.20.11.1098.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The ability to understand other people’s intentions by observing their actions is crucial to interpret and anticipate their behavior. However, the specific neural computations involved in this ability remain unclear and causally untested. One major reason is the difficulty of identifying intention readout patterns associated with ever-changing kinematic features. Movement is “repetition without repetition”. Statistical analyses averaging across trials can blur away how intention information encoded in single trial variations is readout in real-time. Here we developed a novel approach combining motion tracking with continuous theta burst stimulation (cTBS) and new computational analyses to determine how the transient disruption of a target region – the left inferior parietal lobule (IPL) – influences intention readout computations with single-trial resolution. In separate sessions, participants received neuronavigation-guided cTBS to the left IPL or the left Inferior frontal gyrus (IFG) before completing a two-alternative, forced-choice visual discrimination of intention. Single-trial analyses combined with a set of task manipulations revealed that cTBS to the left IPL, but not to left IFG, selectively impaired the ability to infer the intention of an observed action from variations in visual kinematics. Importantly, IPL cTBS did not interfere with the ability to ‘see’ changes in movement kinematics, nor did it alter the weight given to informative versus non-informative kinematic features. Rather, it selectively impaired the ability to link variations in informative features to the correct intention. These results support a model in which the selection of the most informative kinematic feature occurs outside of the left IPL and in which the left IPL is selectively responsible for the correct readout of such features.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×