October 2020
Volume 20, Issue 11
Open Access
Vision Sciences Society Annual Meeting Abstract  |   October 2020
Dynamic domain specificity in ventral temporal cortex during visual object perception
Author Affiliations
  • Brett Bankson
    Laboratory of Cognitive Neurodynamics, University of Pittsburgh
    Cognitive Program, Department of Psychology, University of Pittsburgh
    Center for the Neural Basis of Cognition
  • Matthew Boring
    Laboratory of Cognitive Neurodynamics, University of Pittsburgh
    Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh
    Center for the Neural Basis of Cognition
  • R. Mark Richardson
    Department of Neurosurgery, Massachusetts General Hospital
    Harvard Medical School
  • Avniel Singh Ghuman
    Laboratory of Cognitive Neurodynamics, University of Pittsburgh
    Cognitive Program, Department of Psychology, University of Pittsburgh
    Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh
    Center for the Neural Basis of Cognition
Journal of Vision October 2020, Vol.20, 115. doi:https://doi.org/10.1167/jov.20.11.115
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Brett Bankson, Matthew Boring, R. Mark Richardson, Avniel Singh Ghuman; Dynamic domain specificity in ventral temporal cortex during visual object perception. Journal of Vision 2020;20(11):115. doi: https://doi.org/10.1167/jov.20.11.115.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

An enduring debate regarding the functional architecture of the cortex is whether different kinds of information are represented by distributed and overlapping neural circuits or are restricted to networks specialized for particular domains of information. Neural recordings, lesions, and stimulation show that the perception of particular visual categories is causally related to the activity in category-selective patches of ventral temporal cortex. On the other hand, visual deficits caused by lesions are rarely, if ever, “pure,” and information about categories can be found outside of patches selective for those categories. Given that category-level discrimination is generally spared in various agnosias, a critical tension between domain-specific vs. distributed models is whether individual-level discrimination can be found outside of putative category-selective areas. To address this tension, intracranial recordings from 17 epilepsy patients were used to assess the spatiotemporal representation for individual faces and words in human temporal cortex. Recordings from a category localizer task were used to measure category selectivity in all electrodes located in ventral temporal cortex. Multivariate classification was used to analyze the spatiotemporal dynamics of individual face or word discrimination inside and outside these category-selective cortical patches. The results of this analysis show that single faces and words can be individuated both within and outside of category-selective patches, but the respective representations emerge approximately 200 ms earlier inside than outside the selective patches. Further analyses reveal that the information represented outside of category-selective patches is non-redundant with the information within these patches, and thus the non-selective regions contribute to the overall neural representation though in a later stage of processing. These results provide a potential resolution between domain-specific and distributed models of visual perception by suggesting that the cortical representation is dynamic, with processing first primarily restricted to domain-specific networks followed by a distributed processing stage.

×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×