October 2020
Volume 20, Issue 11
Open Access
Vision Sciences Society Annual Meeting Abstract  |   October 2020
Doing vs. viewing: Common neural correlates of motor execution and body movement perception in EEG
Author Affiliations & Notes
  • Alison Harris
    Claremont McKenna College, Claremont, CA
  • Catherine Reed
    Claremont McKenna College, Claremont, CA
  • Footnotes
    Acknowledgements  This material is based upon work supported by the National Science Foundation under Grant No. 1923178.
Journal of Vision October 2020, Vol.20, 436. doi:https://doi.org/10.1167/jov.20.11.436
  • Views
  • Share
  • Tools
    • Alerts
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Alison Harris, Catherine Reed; Doing vs. viewing: Common neural correlates of motor execution and body movement perception in EEG. Journal of Vision 2020;20(11):436. doi: https://doi.org/10.1167/jov.20.11.436.

      Download citation file:

      © ARVO (1962-2015); The Authors (2016-present)

  • Supplements

Human body movements provide important information about the intentions and emotions of others, and growing evidence suggests that we understand others’ mental states by internally recreating, or simulating, their external actions. Research using electroencephalography (EEG) has found reductions in oscillatory “mu” rhythms (8-14 Hz) over sensorimotor cortex both for executed and observed movements. Yet, because previous studies have compared a small subset of electrodes without controlling for visual and attentional factors, questions remain about the respective contributions of perceptual and motor systems to action simulation. Additionally, the effect of emotional content on mu suppression has been relatively unexplored, despite the putative role of action simulation in emotion perception. Here we used high-density EEG to directly compare brain activity associated with motor execution and action observation. In separate blocks, participants (n = 31) completed a finger-tapping task and observed point-light displays (PLDs) of emotional and affectively neutral body movements. Low-level motion information was controlled by contrasting biologically plausible coherent and scrambled PLDs, and attention was maintained through a continuous one-back monitoring task. Motor execution was associated with significant mu suppression (10-14 Hz) over sensorimotor cortex for finger-tapping relative to rest. Comparing action observation for coherent versus scrambled PLDs likewise revealed significant alpha-band suppression in central and frontal sensors, though the average peak frequency of mu suppression was significantly lower (action execution: 11.7 Hz, action observation: 10.8 Hz). Finally, contrasting emotional and neutral body movements, we found no significant differences in sensorimotor mu suppression, but significantly greater alpha suppression over occipital and parietal cortex, perhaps reflecting the greater attentional salience of emotional content. Together, these results generally support the role of sensorimotor systems in action simulation, both for neutral and emotional movements. However, we observed substantial individual variation in the magnitude and distribution of mu suppression, suggesting an avenue for further investigation.


This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.