We performed two factor analyses to identify variables that account for the variance in all CSFs: one analysis of the raw (not smoothed) sweep lengths and one analysis after normalizing the mean sweep length of each CSF to the grand mean (0.528). The second analysis was conducted to identify factors that account for variation in CSF
shape rather than size. All mean sweep lengths from the normal and impaired CSFs of all observers were included in both analyses for a total of 98 CSFs. Factors were identified using the principal component method and an orthogonal equamax rotation. Two factors with an eigenvalue greater than 1 were retained in each analysis. The factor loadings on all 15 sweeps are shown in the top row of
Figure 5 and are immediately interpretable. In the raw analysis (left), Factor 1 explained variance in overall CSF radius (79.35%), weighted more heavily toward the high-spatial-frequency end of the curve, while Factor 2 explained some remaining variance (9.49%) in CSF radius at the low-spatial-frequency end. Notably, Factor 1 was highly correlated with both peak contrast sensitivity (
r = .833) and peak spatial frequency (
r = .978). Factor 2, however, was moderately correlated with peak contrast sensitivity (
r = .519) but only weakly and negatively correlated with peak spatial frequency (
r = −.127, all
p < 0.001). Both factors explained 96.4% of the variance in peak contrast sensitivity and 97.3% of the variance in peak spatial frequency when combined in linear regression models. We labeled these factors as “CSF radius” and “CSF slope,” respectively. Note the results of this factor analysis do not substantially change if the impaired curves are excluded from the analysis, indicating that the same underlying factors account for variation in CSFs among observers with normal or corrected-to-normal refraction. Similarly, performing the same factor analysis on the smoothed CSFs yielded nearly identical results, except that the two factors instead account for a total of 97.56% of the variance in the smoothed sweep lengths. In the normalized analysis (right), Factor 1 explained 55.41% of the total variance and can be interpreted as the “aspect ratio” of the CSF. Higher scores on this factor indicate a greater width-to-height ratio in the CSF; conversely, lower scores indicate a smaller width-to-height ratio, as is the case for CSFs that drop off rapidly from their peak sensitivity. Predictably, this factor was significantly correlated with both CSF radius (
r = 0.828) and slope (
r = −0.532) from the raw analysis, both
p < 0.001. Factor 2 accounted for 10.84% of the variance and can be interpreted as the “curvature” of the CSF. Higher scores on this factor indicate that the CSF has a greater radius along the central (more diagonal) sweeps relative to the low-end and high-end sweeps, while lower scores are typical of CSFs that peak earlier and are more buckled in the center. Curvature was correlated positively and moderately with both CSF radius (
r = 0.321) and slope (
r = 0.291), both
p < 0.001.