VWM capacity was assessed using a Change Detection Paradigm (
Luck & Vogel, 1997) where the stimulus array was composed of colored squares (1 degree × 1 degree of visual angle). We used eight colors: black (red, green, and blue [RGB] values = 0, 0, and 0), blue (0, 0, and 255), green (0, 255, and 0), red (255, 0, and 0), brown (116, 58, and 0), purple (116, 58, and 128), yellow (255, 255, and 0), and white (255, 255, and 255). Each array was comprised of two to seven squares displaced to the left and right of a central fixation circle on a grey background. The sample stimuli were presented for 100 ms, followed by a 900 ms retention interval. At test, the array briefly reappeared (100 ms) and was either identical or different to the sample array (see
Figure 1D). The color of one item in the test array was different from the corresponding item in the sample array on 50% of the trials. Participants indicated whether there was a “change” or “no change” to the display using the “c” and “n” keys, respectively. One hundred eighty-four experimental trials were completed in total, with the opportunity for a break every 25 trials. To estimate VWM capacity, change detection accuracy was transformed into a
K estimate using
Pashler's (1988) formula: N × (H – FA)/(1 – FA), where
K corresponds to the number of items maintained in VWM, N represents the set size, H is the hit rate (proportion of correct responses to change trials), and FA is the false alarm rate (proportion of incorrect responses to no-change trials). Estimates for VWM capacity were initially calculated for each set size; we then averaged these values across set sizes three to seven (omitting set size 2, where performance was near ceiling) to produce overall estimates of individual VWM capacity.