Abstract
Natural scenes are not arbitrary arrangements of unrelated pieces of information. Their composition rather follows statistical regularities, with meaningful information appearing in predictable ways across different parts of the scene. Here, I will discuss how characteristic relations across different scene parts shape scene processing in the visual system. I will present recent research, in which I used variations of a straightforward "jumbling" paradigm, whereby scenes are dissected into multiple parts that are then either re-assembled into typical configurations (preserving part-whole relations) or shuffled to appear in atypical configurations (disrupting part-whole relations). In a series of fMRI and EEG studies, we showed that the presence of typical part-whole relations has a profound impact on visual processing. These studies yielded three key insights: First, responses in scene-selective cortex are highly sensitive to spatial part-whole relations, and more so for upright than for inverted scenes. Second, the presence of typical part-whole structure facilitates the rapid emergence of scene category information in neural signals. Third, the part-whole structure of natural scenes supports the perception and neural processing of task-relevant objects embedded in the scene. Together, these results suggest a configural code for scene representation. I will discuss potential origins of this configural code and its role in efficient scene parsing during natural vision.