Abstract
Primates are remarkably good at recognizing faces and objects in their visual environment, even after just a brief glimpse. How do we develop the neural circuitry that supports such robust perception? The anatomical consistency and apparent modularity of face and object processing regions indicate that intrinsic constraints play an important role in the formation of these brain regions. Yet, the neonate visual system is limited and develops throughout childhood. Here, I will discuss work on the development of the human and nonhuman primate visual systems. These studies demonstrate that regions specialized in the processing of faces are the result of experience acting on an intrinsic but malleable neural architecture. Subcortical and cortical topographic connectivity play a fundamental role, providing an early scaffolding that guides experience-driven modifications. Within the visual system, this connectivity reflects an extensive topographic organization of visual space and shape features that are present at birth. During postnatal development, this proto-architecture is modified by daily experience to become selectively responsive to frequently encountered elements of the environment. Anatomical localization is governed by correspondences between maps of low-level feature selectivity and where in visual space these features are typically viewed. Thus, rather than constituting rigidly pre-specified modules, face and object processing regions instead reflect an architecture that builds on topographic scaffolds to learn and adapt to the regularities of our visual environment.