Abstract
Perceptual modulations at the target of an impending, large-scale eye movement (saccade) have been studied extensively. Until recently, however, little was known about the concurrent development of visual perception in the pre-saccadic center of gaze. Based on converging evidence from several investigations, we suggest that pre-saccadic foveal vision operates predictively: defining features of a saccade target are enhanced at the pre-saccadic fixation location. Four main findings support this idea: First, using a dynamic large-field noise paradigm, we observed higher Hit Rates for foveal probes with target-congruent orientation and a sensitization to incidental, target-like orientation information in foveally presented noise. Second, by densely sampling the (para-)foveal space, we demonstrate that enhancement is confined to the center of gaze and its immediate vicinity. Moreover, taking single-trial saccade landing errors into account revealed that enhancement is aligned to the fovea, not to the future retinal (predictively remapped) location of the saccade target. Third, foveal enhancement during saccade preparation emerges faster and is more pronounced than enhancement during passive fixation. Lastly, the foveally predicted signal relies on instantaneous peripheral input: as the eccentricity of the saccade target increases (i.e., as its pre-saccadic resolution decreases), the foveal orientation prediction manifests in a progressively lower spatial frequency range. Our findings suggest that, right before a saccade, peripheral information is available for foveal processing, possibly via feedback connections to foveal retinotopic cortex. By commencing foveal target processing before the movement is executed, this mechanism enables a seamless transition once the center of gaze reaches the target.