Abstract
The primary symptom of Visual Snow Syndrome (VSS) is a veil of dots/static flickering across the entire visual field. VSS is a serious but poorly understood disorder (prevalence 1.4-3.3%). Symptoms of VSS can interfere with daily tasks like driving and reading. However, few studies have examined VSS, and quantitative measurements of symptoms are lacking. We developed a matching task in which participants with VSS adjusted parameters of simulated visual snow on a computer screen; participants modified the contrast, density, speed, and size of an array of dots to match their visual snow. Simulated snow was generated by random independent draws from a binary distribution controlled by the contrast parameter. Snow density was adjusted by setting a proportion of pixels equal to the background luminance. The speed setting determined the lifetime of each snow element, after which it was replaced. Dot size was adjusted by moving closer or further from the display and recording the viewing distance, as perceived snow elements were generally smaller than one pixel viewed from 0.5 m. Individuals with VSS said the simulated snow closely resembled their perceived snow, and parameter settings were consistent across trials. Simulated snow contrast settings were relatively low and dot size was relatively small. This task provides a quantitative assessment of visual snow percepts, which may facilitate assessment of treatments/therapies and testing of hypotheses about underlying mechanisms.
Funding: Funding: This work was supported by funding from the National Institutes of Health and the National Science Foundation (T32 EY025187, DGE-1734815, R25 NS117356)