December 2023
Volume 23, Issue 15
Open Access
Optica Fall Vision Meeting Abstract  |   December 2023
Contributed Session II: Binocular combination of the pupil response depends on photoreceptor pathway
Author Affiliations
  • Federico G. Segala
    Department of Psychology, University of York, York, United Kingdom
  • Joel T. Martin
    Department of Psychology, University of York, York, United Kingdom
  • Aurelio Bruno
    School of Psychology and Vision Sciences, University of Leicester, Leicester, United Kingdom
  • Alex R. Wade
    1. Department of Psychology, University of York, York, United Kingdom 2. York Biomedical Research Institute, University of York, York, United Kingdom
  • Daniel H. Baker
    1. Department of Psychology, University of York, York, United Kingdom 2. York Biomedical Research Institute, University of York, York, United Kingdom
Journal of Vision December 2023, Vol.23, 77. doi:https://doi.org/10.1167/jov.23.15.77
  • Views
  • Share
  • Tools
    • Alerts
      ×
      This feature is available to authenticated users only.
      Sign In or Create an Account ×
    • Get Citation

      Federico G. Segala, Joel T. Martin, Aurelio Bruno, Alex R. Wade, Daniel H. Baker; Contributed Session II: Binocular combination of the pupil response depends on photoreceptor pathway. Journal of Vision 2023;23(15):77. https://doi.org/10.1167/jov.23.15.77.

      Download citation file:


      © ARVO (1962-2015); The Authors (2016-present)

      ×
  • Supplements
Abstract

The pupillary light response is driven by three classes of retinal photoreceptor. Cones and rods are involved in the initial constriction of the pupil, whereas melanopsin-containing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) maintain constriction over longer timescales. Previous work has characterized the contributions of photoreceptor signals to pupil control, but relatively little is known about binocular combination of these signals when simultaneously stimulating the retina in both eyes. We measured changes in pupil size in 48 participants using a binocular eye-tracker, targeting specific photoreceptor classes with a binocular 10-primary light engine and the silent substitution method. We stimulated the periphery of the retina using light flickering at 0.4 and 0.5 Hz. Participants viewed a disc of either achromatic flickering light, or contrast modulations that targeted the ipRGCs, or the opponent colour pathways L-M or S-(L+M). Using a modified virtual reality headset, we presented the stimuli at a range of modulation amplitudes in three different ocular configurations: monocular, binocular, and dichoptic. We obtained clear pupil responses at both the first and the second harmonic frequencies. Suppression levels differed across conditions with the strongest suppression measured for the L-M condition. We account for the results in a single modelling framework where the weight of interocular suppression determines the binocular combination properties.

Footnotes
 Funding: Funding: Biotechnology and Biological Sciences Research Council grant BB/V007580/1 awarded to DHB and ARW
×
×

This PDF is available to Subscribers Only

Sign in or purchase a subscription to access this content. ×

You must be signed into an individual account to use this feature.

×