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How similar are the eye movement patterns of different subjects when free viewing dynamic natural scenes? We collected a
large database of eye movements from 54 subjects on 18 high-resolution videos of outdoor scenes and measured their
variability using the Normalized Scanpath Saliency, which we extended to the temporal domain. Even though up to about
80% of subjects looked at the same image region in some video parts, variability usually was much greater. Eye movements
on natural movies were then compared with eye movements in several control conditions. “Stop-motion” movies had almost
identical semantic content as the original videos but lacked continuous motion. Hollywood action movie trailers were used to
probe the upper limit of eye movement coherence that can be achieved by deliberate camera work, scene cuts, etc. In a
“repetitive” condition, subjects viewed the same movies ten times each over the course of 2 days. Results show several
systematic differences between conditions both for general eye movement parameters such as saccade amplitude and
fixation duration and for eye movement variability. Most importantly, eye movements on static images are initially driven by
stimulus onset effects and later, more so than on continuous videos, by subject-specific idiosyncrasies; eye movements on
Hollywood movies are significantly more coherent than those on natural movies. We conclude that the stimuli types often
used in laboratory experiments, static images and professionally cut material, are not very representative of natural viewing
behavior. All stimuli and gaze data are publicly available at http://www.inb.uni-luebeck.de/tools-demos/gaze.

Keywords: eye movements, active vision, structure of natural images

Citation: Dorr, M., Martinetz, T., Gegenfurtner, K. R., & Barth, E. (2010). Variability of eye movements when viewing dynamic
natural scenes. Journal of Vision, 10(10):28, 1–17, http://www.journalofvision.org/content/10/10/28, doi:10.1167/10.10.28.

Introduction

Eye movements while watching moving
images

Humans make several eye movements per second, and
where they look ultimately determines what they perceive.
Consequently, much research over several decades has
been devoted to the study of eye movements, but for
technical reasons, this research has mostly been limited to
the use of static images as stimuli. More recently,
however, an increasing body of research on eye move-
ments on dynamic content has evolved. Blackmon, Ho,
Chernyak, Azzariti, and Stark (1999) reported some
evidence for certain aspects of the “scanpath theory”
(Noton & Stark, 1971) on very simple, synthetic dynamic
scenes. Several studies were concerned with modeling
saliency, i.e., the contribution of low-level features to gaze

control (e.g., Itti, 2005, Le Meur, Le Callet, & Barba,
2007), and found, not surprisingly, that motion and
temporal change are strong predictors for eye movements.
Tseng, Carmi, Cameron, Munoz, and Itti (2009) quantified
the bias of gaze toward the center of the screen and linked
this center bias to the photographer’s bias to place
structured and interesting objects in the center of the
stimulus. Carmi and Itti (2006) investigated the role of
scene cuts in “MTV-style” video clips and showed that
perceptual memory has an effect of eye movements across
scene cuts. Cristino and Baddeley (2009) recorded videos
with a head-mounted camera while walking down the
street; they then compared gaze on these original with that
on a set of filtered movies to assess the impact of image
features vs. “world salience,” i.e., behavioral relevance.
Stimuli obtained with a similar setup, a head-mounted and
gaze-controlled camera (Schneider et al., 2009), were used
by ’t Hart et al. (2009). These authors presented the
natural video material to subjects either as the original,
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continuous movie or in a shuffled, random sequence of 1-s
still shots. The distribution of gaze on the continuous
stimuli was wider than for the static sequence and also a
better predictor of gaze during the original natural
behavior. In other studies, the variability of eye move-
ments of different observers was analyzed with an
emphasis on how large the most-attended region must be
to encompass the majority of fixations in the context of
video compression (Stelmach & Tam, 1994; Stelmach,
Tam, & Hearty, 1991) and enhancement for the visually
impaired (Goldstein, Woods, & Peli, 2007). Marat et al.
(2009) evaluated eye movement variability on short TV
clips using the Normalized Scanpath Saliency (Peters,
Iyer, Itti, & Koch, 2005). Comparing the viewing behavior
of humans and monkeys, Berg, Boehnke, Marino, Munoz,
and Itti (2009) found that monkeys’ eye movements were
less consistent with each other than those of humans.
Hasson, Landesman et al. (2008) presented clips from
Hollywood movies and everyday street scenes to observers
while simultaneously recording brain activation and eye
movements; both measures showed more similarity across
observers on the Hollywood movies (particularly by Alfred
Hitchcock) than on the street scenes. However, when
playing the movies backward, eye movements remained
coherent whereas brain activation did not.
With a few exceptions, these studies used professionally

recorded and cut stimulus material such as TV shows or
Hollywood movies. Arguably, such stimuli are not
representative of the typical input to a primate visual
system. Other authors therefore have also studied gaze
behavior in real-world tasks, such as driving (Land & Lee,
1994; Land & Tatler, 2001), food preparation (Land &
Hayhoe, 2001), and walking around indoors (Munn,
Stefano, & Pelz, 2008) and outdoors (Cristino & Baddeley,
2009, Schneider et al., 2009). We here set out to study
viewing behavior on natural, everyday outdoor videos.

Purpose of this study

How do people watch dynamic natural scenes? So far,
much research on eye movements has either used static
natural images or easily accessible, professionally cut
video material as stimuli. In this exploratory study, we
recorded eye movements from a large number of subjects
to investigate various facets of the free viewing of truly
naturalistic, uncut scenes. Besides general eye movement
parameters such as saccadic amplitude, fixation duration,
and the central bias, we also analyze gaze variability, i.e.,
the similarity between eye movements of different
observers. This was motivated by our work on gaze
guidance to aid observers in following optimal gaze
patterns (Barth, Dorr, Böhme, Gegenfurtner, & Martinetz,
2006). More specifically, we aimed to understand the
limits of variability in eye movements observers make on
dynamic natural scenes. Intuitively, a very low variability,
i.e., a scene on which all observers follow the same gaze

pattern, offers little room to guide the observer’s attention;
at the same time, a very high variability might indicate a
dominance of idiosyncratic viewing strategies that would
also be hard to influence. The measurement of gaze
variability further allows us to empirically evaluate one
particular prediction of the scanpath theory (Noton &
Stark, 1971), namely that there exists a hierarchy of eye
movement similarity for comparisons among and across
subjects and stimuli.
However, most of these observations are merely

descriptive and not meaningful per se. To see whether
natural movies are a special class of stimuli, we therefore
repeated the same analyses with different stimulus types.
Each of these control conditions differs from natural
movies in one specific aspect, and any differences in
viewing behavior can then be attributed to this change.
The obvious defining difference between natural movies

and static images is the absence of continuous temporal
change in the latter, and we therefore explore the effect of
such temporal change on viewing behavior. A straightfor-
ward approach would be to follow the common psycho-
physical paradigm for the collection of eye movements on
static images and to present a “random” series of images
for several seconds each, and indeed we collect such data
as a baseline. However, the comparison of such stimuli
with natural movies poses two problems. First, it is not
clear what the optimal presentation time should be for the
individual static images. If it is too short, obviously not
much information can be extracted beyond the very first
few fixations; if it is too long, on the other hand, observers
might lose interest and resort to idiosyncratic top-down
viewing strategies in the absence of sufficient bottom-up
stimulation. Second, random series of images are typically
used to avoid any potential bias introduced by prior
knowledge of the stimulus, i.e., any upcoming stimulus
image should be unpredictable by the observer. Contrary
to this, natural movies usually are highly predictable. To
avoid these two problems, we therefore designed “stop-
motion” movies without continuous temporal change that
resembled natural movies as closely as possible: they
consisted of a sequence of interleaved frames taken from a
natural movie in their chronological order (note, however,
that a small semantic difference between the movies
remains because very short events are not necessarily
depicted in the stop-motion stimuli). A similar study to
compare static and continuous image presentations was
recently undertaken by ’t Hart et al. (2009), who took 1-s-
long still shots from a set of natural videos and reassembled
them into random sequences. However, in their experi-
ment, depicted scenes were not predictable by the
previous images, whereas in the present study, most of
the scene (the static background, but not moving objects)
stayed the same across image transitions.
Another common class of stimuli comprises professio-

nally cut material, such as TV recordings or Hollywood
movies. We therefore study the effect of cuts and
deliberate camera work by comparing eye movements on
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natural, everyday scenes with those on Hollywood action
movie trailers.
Finally, we make our stimuli and gaze recordings

publicly available to provide a large data set of eye
movements on high-resolution natural videos at http://
www.inb.uni-luebeck.de/tools-demos/gaze.

Methods

Natural movies

A JVC JY-HD10 HDTV video camera was used to
record 18 high-resolution movies of a variety of real-
world scenes in and around Lübeck. Eight movies
depicted people in pedestrian areas, on the beach, playing
mini golf in a park, etc.; three movies each mainly showed
either cars passing by or animals; a further three movies

showed relatively static scenes, e.g., a ship passing by in
the distance; and one movie was taken from a church
tower, giving a bird’s-eye view of buildings and cars. All
movie clips were cut to about 20-s duration; their
temporal resolution was 29.97 frames per second and
their spatial resolution was 1280 by 720 pixels (NTSC
HDTV progressive scan). All videos were stored to disk in
the MPEG-2 video format with a bit rate of 18.3 Mbit/s.
The camera was fixed on a tripod and most movies
contained no camera or zooming movements; only four
sequences (three of which depicted animals) contained
minor pan and tilt camera motion. A representative
sample of still shots is given in Figure 1.

Trailers

The official trailers for the Hollywood movies “Star
WarsVEpisode III” and “War of the Worlds” were used

Figure 1. Still shots from all movies used in the natural condition.
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for this condition. Both had a duration of about 32 s each
and a spatiotemporal resolution of 480 by 360 pixels, 15 fps
and 480 by 272 pixels, 24 fps, respectively. Some text on
plain background is shown during the first and last few
seconds, but in between, these trailers are characterized by
a large amount of object motion, explosions, etc., and
many scene cuts (21 and 24, respectively). Camera work
is deliberately aimed at guiding the viewer’s attention, e.g.,
by zooming in on the face of a scared child. The
accompanying sound track was not played during stimulus
presentation.

Stop motion

Nine out of the 18 natural movies were also shown in a
“stop-motion” condition. Instead of displaying all
(around) 600 frames at 30 frames per second, only every
90th frame was displayed for a full 3 s. Thus, the sequence
and timing of depicted events was the same as in the
original movie but was revealed only in steps similar to
scene cuts (note that, typically, the whole scene layout
changes with a cut; here, only the position and appearance
of moving objects change, whereas the background stays
the same).

Static images

Finally, still shots from the nine movies not used in the
“stop-motion” condition were used to record eye move-
ments on static images. Similar to the “stop-motion”
condition, every 90th frame of a movie was used, but the
order was randomized over movies and the temporal
sequence of still shots so that subjects could not predict a
stimulus from the previous one.

Data recording

All eye-movement recordings were made with an SR
Research EyeLink II eye tracker, using information from
pupil and corneal reflection to estimate gaze at 250 Hz.
This tracker compensates for small head movements, but
subjects’ heads were still fixated in a chin rest. After an
initial binocular calibration, only monocular data from the
eye with the smaller validation error were used throughout
the experiments (mean validation error of 0.62 deg).
Subjects were seated 45 cm away from an Iiyama
MA203DT screen that had a width of 40 cm and a height
of 30 cm; all stimuli were scaled to make use of the full
screen (that was run at a resolution of 1280 by 960 pixels).
Since the videos (except for the Hollywood trailers) had
an aspect ratio of 16:9 and would not natively fit on the
monitor with an aspect ratio of 4:3, they were displayed in
the “letterbox” format with black borders below and
above such that pixels had the same physical width as

height. Videos covered about 48 by 27 degrees of visual
field, and about 26.7 pixels on the screen corresponded to
1 degree of visual angle for the high-resolution movies
(1280 by 720 pixels).
For a smooth playback of videos, two computers were

used. The first computer ran the eye tracking software; the
second was used for stimulus decoding and display.
Therefore, gaze recordings and video timing had to be
synchronized, for which two strategies were employed. In
Experiment 1, the display computer sent a trigger signal to
the tracking host via a dedicated ethernet link whenever a
new frame was displayed (every 33 ms); these trigger
signals and the gaze data were stored to disk using
common time stamps by the manufacturer’s software. In
all other experiments, a three-computer setup was used.
Gaze measurements were sent from the tracker across an
ethernet link to a relay computer and from there on to the
display computer, where independent threads wrote both
gaze and video frame time stamps to disk using the same
hardware clock. This seemingly complicated setup was
necessary because the tracker manufacturer’s API requires
the network to be constantly monitored (polled) for new
gaze samples to arrive, wasting CPU cycles and poten-
tially disturbing the smooth playback of (high-resolution)
video. The task of the relay computer thus was to
constantly check whether a new gaze sample had arrived
from the tracker, using the proprietary software; each
sample was then converted to a custom clear-text format
and sent on to the display computer, where the receiving
thread (performing a “blocking wait” on its network
socket) would only run very briefly every 4 ms (at a
sampling rate of 250 Hz). Because of the low system
load and the low conversion rate, this relay step did not
incur a significant delay; the latency of both synchroni-
zation approaches is in the single digit millisecond
range, and the latter approach has also been used success-
fully for latency-critical gaze-contingent paradigms (Dorr,
2010).
Subjects were recruited among students (overall age

ranging from 18 to 34 years) at the Psychology Depart-
ment of Giessen University who were paid for their
participation. In Experiment 1, data from fifty-four
subjects (46 females, eight males) were collected. After
an initial nine-point calibration and the selection of the
preferred eye, all 18 movies were shown in one block.
After every movie presentation, a drift correction was
performed; this scheme was also adhered to in the
following experiments.
For the repetitive presentation of movies in Experi-

ment 2, 11 subjects came to the laboratory for 2 days in a row.
Each day, the trailers and six movies out of the 18 natural
movies from Experiment 1 (beach, breite_strasse, ducks_
children, koenigstrasse, roundabout, street) were shown
five times each in randomized order.
A further 11 subjects participated in Experiment 3 and

watched nine “stop-motion” movies, which were created
from a subset of the 18 natural movies from Experiment 1
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(beach, breite_strasse, bridge_1, bumblebee, ducks_children,
golf, koenigstrasse, st_petri_gate, st_petri_mcdonalds). Then,
subjects were shown, after another calibration, still shots from
the remaining nine movies (bridge_2, doves, ducks_boat,
holsten_gate, puppies, roundabout, st_petri_market, street,
sea) in randomized order. Still shots were shown for 2 s
each.
In all of the above experiments, subjects were not given

any specific task other than to “watch the sequences
attentively.”

Data analysis
Gaze data preprocessing

The eye tracker marks invalid samples and blinks,
during which gaze position cannot be reliably estimated.
Furthermore, blinks are often flanked by short periods of
seemingly high gaze velocity because the pupil gets
partially occluded by the eye lid during lid closure, which
in turn leads to an erroneous gaze estimation by the
tracker. These artifacts were removed and recordings that
contained more than 5% of such low confidence samples
were discarded. In Experiment 1, this left between 37 and
52 recordings per video sequence and 844 (out of 972)
recordings overall (Experiment 2: 707 out of 840; Experi-
ment 3: 627 out of 792).
Saccades are typically extracted from raw gaze record-

ings based on the high velocity of saccadic samples.
However, the choice of an optimal threshold for saccade
velocity is difficult: a low threshold might lead to a high
false positive rate, i.e., the detection of too many saccades
due to microsaccades and impulse noise in the eye tracker
measurements; a high threshold, on the other hand, might
forfeit information from the beginning and end of
saccades, where velocity is still accelerating or decelerat-
ing, respectively. Therefore, we labeled saccadic samples
in a two-step procedure. To initialize search for a saccade
onset, velocity had to exceed a relatively high threshold
(138 deg/s) first. Then, going back in time, the first sample
was searched where velocity exceeded a lower threshold
Eoff (17 deg/s) that is biologically more plausible but less
robust to noise (both parameters were determined by
comparing detection results with a hand-labeled subset of
our data). In a similar fashion, saccade offset was the first
sample at which velocity fell below the lower threshold
again. Finally, several tests of biological plausibility were
carried out to ensure that impulse noise was not identified
as a saccade: minimal and maximal saccade durations
(15 and 160 ms, respectively) and average and maximum
velocities (17 and 1030 deg/s, respectively).
Determining fixation periods is particularly difficult for

recordings made on dynamic stimuli (Munn et al., 2008).
Smooth pursuit eye movements cannot occur on static
images and are hard to distinguish from fixations because
of their relatively low velocity of up to tens of degrees per
second; but even a small, noise-induced displacement in

the gaze measurement of just 1 pixel from one sample to
the next already corresponds to about 9 degrees per
second. However, manual labeling of fixations is not
feasible on such large data sets as that of Experiment 1
(about 40,000 fixations); we therefore used a hybrid
velocity- and dispersion-based approach (Salvucci &
Goldberg, 2000) and validated its parameters on a smaller
data set of hand-labeled fixations. After saccade detection,
the intra-saccadic samples were extracted. Here, a sliding
window of at least 100 ms was moved across the samples
until a fixation was detected. This minimum duration of
100 ms ensured that very brief stationary phases in the
gaze data were not labeled as fixations. Then, this fixation
window was extended until either one of two conditions
was met: the maximum distance of any sample in the
window to the center of the fixation window exceeded
0.35 deg (this threshold was gradually increased to 0.55 deg
with longer fixation duration); or the average velocity
from beginning to end of the window exceeded 5 degrees
per second. The latter condition served to distinguish
pursuit-like motion from noise where sample-to-sample
velocities might be high, but velocities integrated over
longer time intervals are low because the direction of gaze
displacements is random. We also varied the minimum
duration to 50 and 150 ms, respectively, and found
qualitatively similar results.

Eye movement similarity

A variety of methods has been proposed in the literature
to assess the consistency of eye movements across
different observers. The fundamental problem is that there
is no obvious metric for eye movement similarity since
there is no direct (known) mapping from eye position to
its perceptual consequences. In practice, there is only a
small probability that two observers will fixate exactly the
same location at exactly the same time; small spatiotem-
poral distances between eye positions, however, might
have been introduced in the measurement only by
fixational instability and the limited eye tracker accuracy
and are thus of little practical relevance. For larger
distances of more than about 1 degree and a few tens of
milliseconds, on the other hand, it is not clear how a
similarity metric should scale: is a fixation twice as far
also twice as different? How about two fixations to the
same location, but of different duration? In the case of our
(moving) stimuli, a further problem arises that looking at
the same image region at different points in time, e.g., in
the background of the scene, might carry a different notion
depending on what is (or is not) occurring elsewhere, e.g.,
in the foreground. As pointed out by Tatler, Baddeley, and
Gilchrist (2005), a good similarity metric should be robust
to extreme outliers and sensitive not only to location
differences but also to differences in the probability of
such locations; if all but one of the subjects looked at the
same location A and the remaining subject looked at
location B, this should be reflected as more coherent than an
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even distribution of fixations over A and B. Additionally,
hard thresholds should be avoided in order to deal with the
inherent spatiotemporal uncertainty in the eye tracker
measurements. Finally, an ideal metric would yield an
intuitively interpretable result and allow for fine-grained
distinctions.
We will now discuss similarity metrics proposed in the

literature according to the above criteria and then describe
our modification of the Normalized Scanpath Saliency
method that will be used in the remainder of this paper.
Several authors have used clustering algorithms to

group fixations and then determined what percentage of
fixations fell into the main cluster, or how large an image
region must be to contain the gaze traces of a certain
number of observers (Goldstein et al., 2007; Osberger &
Rohaly, 2001; Stelmach et al., 1991). Obviously, these
measures yield very intuitive values and are also robust to
outliers. However, they might be sensitive to cluster
initialization, and even if they were extended to regard
the fixations in several clusters, they cannot capture
differences in the distribution of fixations across several
locations. Furthermore, a fixation can either be counted as
inside the cluster or not, which means that a small spatial
displacement can have a significant impact on the result.
Some clustering algorithms introduce a certain smooth-
ness to overcome this problem, e.g., mean-shift clustering
(Santella & DeCarlo, 2004), but the scale of the resulting
cluster becomes unpredictable, so that for densely dis-
tributed data, even two fixations that are very far apart
might be classified as similar.
Another popular approach is to assign a set of letters to

image regions and to create a string where the ith letter
corresponds to the location of fixation i. The resulting
strings can then be compared by string editing algorithms,
which sum penalties for every letter mismatch or other
string dissimilarity such as letter insertions or trans-
positions. Drawbacks of this method are the need for an
a priori definition of regions of interest for the string
alphabet and of a penalty table; inherently, it cannot
distinguish between fixations of different duration.
Nevertheless, the string-editing approach has been used
successfully on line drawings (Noton & Stark, 1971) and
on semi-realistic dynamic natural scenes (Blackmon et al.,
1999) and has been extended to handle the case where the
order of fixated regions matters (Clauss, Bayerl, &
Neumann, 2004).
Mannan, Ruddock, and Wooding (1996) developed a

measure to compare two sets of fixations by summing up
the distances between the closest pairs of fixations from
both sets. This is problematic because the result is
dominated by outliers and probability distribution differ-
ences are not accounted for.
Hasson, Yang, Vallines, Heeger, and Rubin (2008)

cross-correlated horizontal and vertical eye trace compo-
nents of observers across two presentations of the same
movie. The intuitive range of the measure is from j1 for
highly dissimilar scanpaths to 1 for exactly the same

scanpaths, with zero indicating no correlation between the
traces. However, similarity here is defined relative to the
mean position of the eye (which usually also is roughly
the center of the screen, see below); this means that two
scanpaths oscillating between two fixations in counter-
phase, i.e., ABABI and BABAI will always be classified
as very dissimilar, regardless of the actual distance
between A and B.
Another class of methods operates on fixation maps or

probability distributions created by the additive super-
position of Gaussians, each centered at one fixation
location xY = (x, y) (to obtain a probability distribution
function, a subsequent normalization step is required so
that the sum of probabilities over the fixation map equals
one). The inherent smoothness of the Gaussians offers the
advantage that two fixations at exactly the same location
will sum up to a higher value than two closely spaced
fixations, whereas very distant fixations will contribute
only very little to their respective probabilities. This
means that noise both in the visual system and the
measurement has only a small impact on the final result;
by definition, these methods also are sensitive to location
distribution differences. There now are various possibil-
ities to assess the similarity of two fixation maps, which
includes both the comparison of two different groups of
observers and the comparison of just one observer to
another. Since, in practice, fixation maps can only be
created for a finite set of locations anyway, the most
straightforward difference metric is the sum over a
squared pointwise subtraction of two maps (Wooding,
2002). Pomplun, Ritter, and Velichkovsky (1996) have
computed the angle between the vectors formed by a
linearization of the two-dimensional fixation maps. In the
latter study, fixations were also weighted with their
duration, a modification that in principle could also be
applied to the other fixation map-based measures as well.
An approach based on information theory, the Kullback–

Leibler Divergence, was chosen by Rajashekar, Cormack,
and Bovik (2004) and Tatler et al. (2005). This measure,
which strictly speaking is not a distance metric and
needs minor modifications to fulfill metric requirements
(Rajashekar et al., 2004), specifies the information one
distribution provides given knowledge of the second
distribution. The KLD matches all of the above criteria
for a good similarity measure with the possible exception
of intuitiveness: identical distributions have a KLD of zero,
but the interpretation of the (theoretically unbounded)
result for non-identical distributions is not straightforward.
For this reason, we use the Normalized Scanpath

Saliency (NSS) measure as proposed by Peters et al.
(2005). Originally, this measure has been developed to
evaluate how closely artificial saliency models match
human gaze data, but NSS can be directly applied to
assess inter-subject variability as well. The underlying
idea is to construct a fixation map by superposition of
Gaussians as above, but with a different normalization
scheme: mean intensity is subtracted and the resulting
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distribution is scaled to unit standard deviation. This has
the effect that a random sampling of locations in the NSS
map has an expected value of zero, with positive values
resulting from fixated locations and negative values from
non-fixated regions. To evaluate the similarity of eye
movements of multiple observers, it is possible to use a
standard method from machine learning, “leave one out.”
For each observer A, the scanpaths of all other observers
are used to create the NSS map; the values of this NSS
map are then summed up over all fixations made by A. If
A tends to look at regions that were fixated by the other
observers, the sum will be positive; for essentially
uncorrelated gaze patterns, this value will be zero and it
will be negative for very dissimilar eye movements. NSS
has been used on videos before (Marat et al., 2009), but
only on a frame-by-frame basis, similar to the analysis of
static images by Peters et al. (2005). To achieve temporal
smoothing, so that slightly shifted fixation onsets are not
considered to be dissimilar by a hard cut-off, we extended
NSS to the three-dimensional case.
Formally, for each movie and observer i = 1, I, N, Mi

gaze positions xYi
j = (x, y, t) were obtained, j = 1, I, Mi.

Then, for each xYi
j of the training set of observers S =

{1, I, k j 1, k + 1, I, N}, a spatiotemporal Gaussian
centered around xYi

j was placed in a spatiotemporal fixation
map F:

FðxYÞ ¼
X
iZS

XMi

j¼1

G j
i ðxYÞ; ð1Þ

with

Gj
i x

Y
� �

¼ e
j

ð xY j xY
i
jÞ2

2ðA2xþA2yþA2
t
Þ: ð2Þ

This fixation map F was subsequently normalized to
zero mean and unit standard deviation to compute an NSS
map N:

N
�
x
Y� ¼ Fð xYÞjFðxYÞ�

StdðFÞ : ð3Þ

Finally, the NSS score was evaluated as the mean of the
NSS map values at the gaze samples of test observer k:

NSS ¼
XMk

j¼1

NðxYkjÞ=Mk; ð4Þ

and this was repeated for all possible training sets (i.e.,
N times with N different test subjects).

The spatiotemporal Gaussian G had parameters Ax =
Ay = 1.2 deg, At = 26.25 ms. To evaluate gaze variability
over the 20-s time course of the videos, NSS was not
computed on the whole movie at once, but on temporal
windows of 225-ms length that were moved forward by
25 ms every step. These parameters were chosen to
roughly match the size of the fovea and a short fixation
and to have a temporal resolution better than one video
frame; they were also varied systematically with qualita-
tively similar results (A from 0.6 to 2.4 deg, temporal
windows from 75 to 325 ms). Because NSS is sensitive to
the size of the Gaussian G, all results that are presented in
the following were normalized with the inverse of the
NSS of a single Gaussian.
Gaze position xY here refers to the raw gaze samples

provided by the eye tracker except for those samples that
were labeled as part of a saccade. Because visual
processing is greatly reduced during saccades, these
saccadic samples are of no practical relevance for the
present analysis. In principle, the fixation spots could
have been used instead of the raw samples as well,
which would have significantly reduced the computational
cost of this analysis; however, this might have biased
results during episodes of pursuit, where automatic
fixation detection algorithms still have problems and
potentially ascribe fixations to random positions on the
pursuit trajectory. Indeed, it was those movie parts in
which many subjects made pursuit eye movements
where we informally found eye movements to be partic-
ularly coherent. Furthermore, using the raw data allows
for a distinction of different fixation durations; two
fixations to the same location, but with varying duration
will be classified as less similar than two fixations of
identical length (given they take place at similar points in
time).
In theory, this measure is independent of the number of

training samples because it normalizes the training
distribution to unit standard deviation. In practice, how-
ever, small training set sizes may lead to quantization
artifacts; where applicable, we therefore matched the
number of training samples when comparing two con-
ditions. This was particularly important for the compar-
ison of “local” and “repetitive,” because in the latter
condition each scanpath had to be evaluated in terms of a
maximum of only four other scanpaths (the stimuli were
repeated five times per day). A further consequence is
that, in the following, different absolute NSS values are
occasionally reported for the same condition (but in the
context of different comparisons).
Finally, we ran a comparison of the NSS measure with

the Kullback–Leibler Divergence to exclude the possibil-
ity that our results might underlie some methodological
bias. Even though the NSS analysis yields a more intuitive
absolute score, NSS and KLD differ only slightly in their
relative results. We computed both NSS and KLD scores
over time for all movies in the “local” condition and found
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that they are highly correlated (r = 0.87, SD = 0.05), i.e.,
both methods approximately mark eye movements on the
same video parts as coherent or incoherent, respectively.

Results

Saccadic amplitudes and fixation durations

The distribution of saccadic amplitudes for natural
movies and for the other stimulus types is shown in
Figures 2 and 3A, respectively.
On natural movies, saccadic amplitudes follow a

skewed distribution with a mean of 7.2 deg and a median
of 5.5 deg. Looking at the shape of the empirical
cumulative distribution function (ECDF) in comparison
to that of the other stimulus types, the ECDF for natural
movies rises quickly but saturates late. This means that
observers tend to make both more small and more large
saccades (with amplitudes of less than 5 and more than
10 degrees, respectively) on natural movies, whereas
saccades of intermediate amplitudes are less frequent than
in the other conditions. In contrast to this, the saccades on
Hollywood trailers show the smallest fraction of large
amplitudes, e.g., only 7.8% have an amplitude of 12 deg
or more (natural movies: 16.7%). All the conditions
differ from each other highly significantly (Kolmogorov–
Smirnov test, p G 0.001), with the only exception that the

difference of saccadic amplitude distributions between
stop-motion movies and static images is only weakly
significant (p G 0.02).
Fixation durations are depicted in Figure 3B. We here

also find stimulus type-specific effects. Similar to saccadic
amplitudes, the distributions are heavily skewed, which is
reflected in a pronounced difference of mean and median
values (for natural movies, 326 and 247 ms, respectively).

Figure 2. Distribution of saccadic amplitudes on natural movies
and static images, which are still shots from the natural movies
that were shown in randomized order. Saccades of medium
amplitude (4–12 deg) are more frequent in the static images
condition, whereas saccades on natural movies have small
amplitude (up to 4 degrees) more often.

Figure 3. Empirical cumulative distribution functions (ECDFs) of
(A) saccadic amplitudes and (B) fixation durations for the
different movie types. Natural movies elicit a higher number of
either small or large (but not intermediate) saccades and relatively
short fixations; trailers and stop-motion movies elicit longer
fixations.
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Fixations on stop-motion movies (354 and 253 ms) and on
Hollywood trailers are longer than on natural movies
(mean 340, median 251 ms), and the shortest fixations
occur on static images (mean 240, median 204 ms).
All these differences are statistically significant

(Kolmogorov–Smirnov test, p G 0.001).

Center bias of gaze and stimuli

A well-documented property of human viewing behav-
ior is that observers preferentially look at the center of the
stimulus, the “center bias” (Buswell, 1935; Parkhurst,
Law, & Niebur, 2002; Tatler, 2007; Tseng et al., 2009).
This stands to reason since the center of the screen is the
most informative location: because of the decline in
peripheral acuity of the retina, a fixation to one side of
the screen will lead to an even lower resolution on the
opposite side of the display. Because at least a coarse
“snapshot” of the scene is particularly important during
the first few, exploratory fixations, the central bias is
strongest directly after stimulus onset (Tatler, 2007). In
Figure 4, density estimates are shown for the different
stimulus categories. Eye movements on the Hollywood

trailers are the most centered; here, the densest 10% of
screen area (15.2 by 8.5 deg) contain about 74% of all
fixations, whereas for natural movies this number is only
30% (and 62% of fixations in the densest 30% of the
screen). For stop-motion movies, the center bias again is
slightly stronger than for natural movies (39% and 75% in
the densest 30%) and similar to the center bias of static
images (35% and 72%). Here, fixations are redrawn
toward the center at every new frame onset (data not
shown).
A further common explanation for the center bias of

fixations is that there usually is a bias already in the
stimuli because photographers (consciously or subcon-
sciously) place objects of interest in the image center.
When recording the natural movies, no particular care was
taken to avoid such central bias; on the contrary, the goal
was to record image sequences “from a human stand-
point” to fulfill a common definition of natural scenes
(Henderson & Ferreira, 2004), which ruled out any truly
random sampling. To assess the magnitude of this
potential bias, the spatial distribution of image features
was computed (see Figure 5). The feature used here is a
generic image descriptor, namely the geometrical invari-
ant K. This invariant encodes those image regions that

Figure 4. Distribution of gaze in the different conditions, averaged over all movies and subjects. (A) Natural movies. (B) Stop-motion
movies. (C) Hollywood trailers. (D) Static images. Probability maps were computed for each condition by the superposition of
Gaussians (A = 0.96 deg) at each gaze sample and subsequent normalization; shown here are contour lines. The distribution of gaze on
Hollywood trailers is clearly more centered than in the other conditions. Gaze on natural movies has the widest distribution; in the other
conditions, frequent reorienting saccades to the center are elicited by scene cuts (trailers) or frame onsets (stop-motion).
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change in three spatiotemporal directions, i.e., transient
corners, and it has been shown to be correlated with eye
movements (Vig, Dorr, & Barth, 2009). Even for the
natural movies, there is a certain predominance of central
features, but this effect is particularly strong for the
Hollywood trailers (in fact, Figure 5B still underestimates
the central bias because the frequent scene cuts introduce
globally homogeneous temporal transients). It is worth
pointing out that the fixation distribution for Hollywood
trailers also reflects this central feature distribution;
nevertheless, this does not necessarily imply a causal
connection. Indeed, Tatler (2007) found that the center
bias of fixations on natural static images was independent
of spatial shifts in the underlying feature distributions.

Variability of eye movements on natural
videos

After these general observations, we will now present
results on the variability of eye movements. We start out
with the variability across different observers watching the

same natural movie for a single presentation of the
stimulus (which Stark coined the “local” condition), see
Figure 6 for some prototypical cases in more detail and
Figure 7 for an overview. Shown here are one example
where variability is very high, one example where most
observers look at the same region at least temporarily, and
data for one Hollywood movie trailer. Common to all
movies is that variability is relatively low (coherence, as
shown in the figures, is high) during the first 1 to 2 s due
to the central bias of the first few saccades. After this
initial phase, gaze patterns for the movie “roundabout”
diverge and remain relatively incoherent until the end of
the movie; this is not surprising since the scene is
composed of a crowded roundabout seen from an elevated
viewpoint, i.e., moving objects (cars, pedestrians, cyclists)
are distributed almost uniformly across the screen. Never-
theless, gaze patterns are still more similar than the
random baseline of different observers looking at different
movies. The latter was coined by Stark as the “global”
condition, which models stimulus- and subject-independent
effects such as the central bias and, therefore, is still
higher than pure chance, which would result in an NSS of
0 (mean NSS for “roundabout” is 0.27; for “global,” 0.13,
p G 0.001). NSS for the movie “ducks boat” is shown by
the peaked curve in Figure 6. The overall scene is fairly
static with two boats moored on a canal but no humans or
moving objects (see Figure 1). At about the 5-s mark, a
bird flies by, followed by another bird at 10 s; both these
events make most observers look at the same location
(max NSS 2.61, mean 0.84). Because of pursuit with
different gains, ongoing saccades, and the ultimately
limited calibration accuracy, it is difficult to strictly deter-
mine how many subjects looked at the birds simultaneously;
an informal count, however, reveals that an NSS of about
2.5 corresponds to about 80% of subjects looking at the
same location, with the remaining fifth of fixations quasi-
randomly spread over the remaining scene.
For a comparison, NSS for the trailer “War of the

Worlds” is also plotted and exhibits several such highly
coherent peaks; on average, gaze on trailers is signifi-
cantly more coherent than on natural movies (1.37 vs.
0.72, p G 0.001).
A further prediction by the scanpath theory is that

“idiosyncratic” viewing behavior should be less variable
than the “global” condition, i.e., the eye movements of
one person watching different movies should be more
coherent than those of different persons watching different
movies. However, our data do not support this hypothesis;
indeed, NSS for the idiosyncratic condition is even lower
than for global (0.11 vs. 0.16).

Variability of eye movements on stop-motion
movies

Figure 8 shows the average NSS for the stop-motion
movies and for the matched set of natural movies (only

Figure 5. Distribution of spatiotemporal structure for (A) natural
movies and (B) Hollywood trailers. Shown here is the average
spatial distribution of intrinsically three-dimensional regions as
measured by the structure tensor, i.e., transient or non-rigidly
moving corners, which have been shown to be highly predictive of
eye movements (Vig et al., 2009). The trailers show a stronger
bias for placing structure in the center.
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Figure 6. Normalized Scanpath Saliency on natural movies: when a bird flies by (from 5 to 10 s, another bird follows 11–13 s), almost all
observers orient their attention to the same spot (red line); in the “roundabout” video with small, moving objects evenly distributed across
the scene, eye movements are highly variable and thus have a low coherence (black line). For comparison, the horizontal line denotes the
average across all natural movies; the much higher coherence for one Hollywood trailer is also shown (dashed line).

Figure 7. Distribution of Normalized Scanpath Saliency scores for all natural movies. To remove the onset effect where central bias is
strongest, data from the first 2.5 s were discarded. The boxes enclose data between the first and third quartiles; whiskers extend to the
most extreme point that is at most 1.5 times the inter-quartile distance from the box. For comparison, the rightmost bar shows data for the
“global” baseline. (Image size 48 by 27 degrees.)
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nine out of the 18 natural movies were shown in a stop-
motion version), with dashed vertical lines denoting the
onset of new stop-motion frames. Inter-subject coherence
spikes after every frame onset to above the NSS score on
the continuous movies; after about 1 to 2 s, however,
variability increases and the NSS score drops below that
of the continuous case. This observation is statistically
significant when pooling the first and last seconds of the
3-s frame intervals: initially, mean stop-motion NSS is
higher than local NSS (paired Wilcoxon signed rank test,
p G 0.032); in the last second, this relationship is reversed
(p G 0.032).

Variability increases with repetitive viewing
of the same stimulus

Several studies have found that repetitive presentation
of the same stimulus leads to similar scanpaths (on static
images, Foulsham & Underwood, 2008; Hasson, Yang
et al., 2008; for simple artificial dynamic scenes, Blackmon
et al., 1999). Results from Experiment 2 confirm these
earlier findings; indeed intra-subject variability is lower
than inter-subject variability (mean NSS for repetitive
0.67, local 0.45 on natural movies; on trailers, repetitive
1.4, local 0.88. For both stimulus types, Kolmogorov–
Smirnov test, p G 0.001; the local score here is smaller
than above because of the matched sample size, see
Methods section). One possible confound is that when
recording eye movements from one subject in one session,
calibration inaccuracies might not be independent across
trials, i.e., eye movement coherence might be overesti-

mated; we therefore compared one subject’s scanpaths
only with scanpaths from the other day of data collection
(and indeed found that failure to do so resulted in an even
higher increase in eye movement coherence than above).
However, pooling together up to five repetitions of a
movie may also underestimate how similar gaze patterns
evoked by the same stimulus are: the variability of the
individual presentations, i.e., for the first, second, I
presentation is shown in Figure 9. With increasing number
of repetitions, the variability of eye movements across
subjects increased (p G 0.001, paired Wilcoxon’s test).
Because the bottom-up stimulus properties were kept
constant by definition, this means that individual viewing
strategies had an increasing influence. Interestingly, though,
this effect was reversed when the stimuli were presented
again the following day. The first presentation on the
second day (presentation 6 in Figure 9) led to a coherence
across subjects comparable to that of the very first
presentation (on day one); for subsequent presentations,
coherence declined again.

Correlation of basic eye movement
parameters with variability/hotspots

Finally, we investigated whether the fixations at
locations with high observer similarity, or hotspots, are
different from random fixations. Figure 10 shows fixation
duration and amplitude of the saccade preceding that
fixation as a function of NSS at fixation (relative to the
maximum NSS over all movies; because of the small
sample size for larger values, the range of NSS is clipped

Figure 8. Eye movement coherence on the same set of movies for continuous display (local condition) and for the stop-motion condition,
where one frame is shown every 3 s. In the stop-motion condition, coherence spikes after each frame transition and then drops again
steeply until the next frame onset. This demonstrates a systematic difference in gaze behavior on static and dynamic stimuli.
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at 70% of the maximum). Locations with high coherence,
i.e., locations that were looked at by many observers
simultaneously, were examined with fixations of longer
duration compared to random locations; also, observers
tended to make small saccades toward such highly coherent
locations (in both cases, p G 0.001). In other words, the
image regions that attract attention by a number of people
also attract the attention of individual observers for longer
and more small, object-investigating saccades.

Discussion

We have collected a large set of eye movements on
natural movies and on several other stimulus types. To
investigate the role of temporal change in dynamic stimuli,
we used stop-motion stimuli that have very similar
semantic content as the natural movies but lack continuous
motion. To probe the upper limit of eye movement
coherence, we used trailers for Hollywood action movies
where both low-level features and semantically meaningful
objects were deliberately arranged in order to guide the
viewer’s attention. We found systematic differences
throughout these different stimulus types, which emphasize
the need to study vision under as natural conditions as
possible (Felsen & Dan, 2005). In the following, we will
discuss some of these findings in more detail.

General eye movement parameters

Saccadic amplitude and fixation duration are two well-
studied, basic eye movement parameters. In line with
earlier findings, saccadic amplitudes on natural stimuli
follow a heavily skewed distribution biased toward short
amplitudes, with a long tail of relatively rare saccades of
larger amplitude. In a review of several studies, von

Figure 9. Evolution of coherence during repeated presentation of
the same stimulus on natural movies and Hollywood trailers. Each
movie was presented five times in one session (trials 1–5) and
another five times the following day (trials 6–10). Later presenta-
tions at the same day are significantly more variable (paired
Wilcoxon’s test, p G 0.001), but coherence is comparable between
both days.

Figure 10. (A) Correlation of NSS values on natural movies and
fixation duration. “Hotspots”, where many subjects look simulta-
neously and NSS is high, are fixated for longer periods of time
(9.4 ms/%, R2 = 0.79). (B) Correlation of NSS values and
saccadic amplitudes. Saccades toward hotspots are typically of
small amplitude (j0.05 deg/%, R2 = 0.81).
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Wartburg et al. (2007) found that mean saccadic ampli-
tude scales linearly with stimulus size; the largest natural
stimuli reported had an extent of 34 by 26 deg and
resulted in a mean saccadic amplitude of 6.3 deg (median
5.2 deg). In contrast to this, we measured only slightly
larger saccades (mean 7.2, median 5.5 deg) on more than
30% larger stimuli (image extent of our videos 48 by
27 deg). However, this probably can be explained by the
fact that there are obvious mechanical limits to the range of
eye movements: under natural viewing conditions, sac-
cades typically are accompanied by a head movement
(Einhäuser et al., 2007; Guitton & Volle, 1987; Morasso,
Bizzi, & Dichgans, 1973), but in the present experiments,
these were suppressed by a chin rest. When comparing the
distributions of saccadic amplitudes across the different
stimulus types, eye movements on natural movies comprised
more either small or large saccades, with fewer saccades of
intermediate amplitude than in the other conditions. Appa-
rently, viewing behavior on natural movies can be charac-
terized by occasional larger jumps between clusters of
interesting objects, which are then examined in detail by
small, intra-object saccades; this effect has been observed
before (for static images, see Tatler & Vincent, 2008; for
vision during natural tasks, see Land, Mennie, & Rusted,
1999), but we here find it to be more pronounced for
movies than for static images. Such a phenomenon could
be related to the “two modes of visual processing”
described by Pannasch and Velichkovsky (2009) and
Velichkovsky, Dornhoefer, Pannasch, and Unema (2000),
e.g., that longer saccades are often followed by fixations of
shorter duration (ambient processing) and shorter saccades
are followed by longer fixations (focal processing). On
Hollywood trailers, the smallest fraction of large ampli-
tudes was observed; here, the producers deliberately
capture the viewer’s attention in the center of the screen,
using special effects such as explosions, tracking shots, etc.,
so that there is little incentive for large saccades toward the
periphery. This was also reflected in the fact that saccades
on this type of movie showed the highest center bias.
Multiple studies have found that fixation duration varies

with task (Canosa, 2009; Loschky, McConkie, Yang, &
Miller, 2005; Tatler, Baddeley, & Vincent, 2006). We
found the shortest fixation durations on static images,
which possibly can be explained by an artifact of the
experimental setup: the short presentation time of static
images puts pressure on the subjects to quickly scan the
image before it disappears again. A small but significant
difference was found between natural and stop-motion
movies. Despite the very similar semantic content of these
stimuli types, fixations on stop-motion movies were
slightly longer; intuitively, however, one might expect
shorter fixations because of the cuts that elicit saccades.
Looking at the time course of this difference in detail, we
indeed find that average fixation duration is slightly lower
on stop-motion movies in the first second after every cut
but then increases during the following 2 s of static frame
presentation. The predictability of the individual frames in

the stop-motion condition thus led to less exploratory
viewing behavior than on the static images that were
presented in random order.

Variability

Not surprisingly, we found that eye movements of
several observers on the same natural movie are less
variable than eye movements on different movies; in other
words, that eye movements are at least partially deter-
mined by the visual input. This effect was even stronger
for professionally cut Hollywood trailers.
It is a well-established fact that the consistency in

fixation locations between observers decreases with pro-
longed viewing (Tatler et al., 2005). Some authors have
argued that the direct contribution of low-level saliency to
the choice of fixation targets decreases with viewing time
(Itti, 2006; Parkhurst et al., 2002), while others, e.g.,
Tatler et al. (2005), argue that only the top-down strategy
changes (that picks targets from a low-level defined set of
candidate locations). Cristino and Baddeley (2009), how-
ever, found that eye movements on slightly filtered movie
versions were as predictive of those on the original movie
as were eye movements on heavily (and differently)
filtered versions and reasoned that it is not image saliency
but the behavioral relevance of an image region that draws
attention (such as the curb for navigation, or looking at
other pedestrians for obstacle avoidance). Nevertheless,
we here found a systematic difference in viewing behavior
on dynamic, i.e., more natural stimuli compared to static
images predominantly used in eye movement studies.
Whereas the first few fixations on the static images used in
our stop-motion movies are heavily influenced by stimulus
onset and drawn toward the center of the stimulus,
viewing after as little as 1.5 s becomes unnatural and
idiosyncratic in the absence of continuous temporal
change. ’t Hart et al. (2009) found a similar result in a
recent study. They presented their subjects with a random
sequence of still shots from a set of videos for 1 s each;
these still shots lacked continuous motion and elicited
more centered eye movements than the original videos.
The time course of such gaze behavior led the authors to
interpret this finding as a dominance of stimulus onset
effects. We here confirm this finding for longer presenta-
tion times (3 s instead of 1 s) and extend it to a case
where scenes are highly predictable; even though the still
shots are taken from the same movie and presented in
their correct chronological sequence, frame transitions
still elicit reorienting responses toward the center.

Conclusion

We have extended the study of variability of eye
movements to the temporal domain and natural videos
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and measured basic eye movement parameters on a range
of different stimulus categories. We investigated the
variability introduced by the temporal dynamics of a
stimulus using novel “stop-motion” stimuli and found that
briefly presented static images, as used in common
psychophysical paradigms, are a special case and not very
representative of natural human viewing behavior. Gaze
patterns on professionally cut Hollywood trailers were
also different from those on natural movies. In particular,
the trailers evoked very similar eye movements among
observers and showed the strongest bias for the center of
the screen. We also put to test one aspect of the “scanpath
theory” on natural videos and found that repetitive
viewing of the same stimulus by the same observer
elicited more coherent eye movements than single
stimulus presentations from different observers. However,
we did not find evidence for idiosyncratic viewing
patterns of the same subject across different movies.
In summary, we would like to highlight the importance

of studying vision under naturalistic conditions. Eye
movements are presumably optimized to deal with natural
scenes, and dynamic features in a scene have a major
effect on viewing behavior. To encourage further research
on eye movements made on dynamic natural scenes, we
provide all videos and gaze data online at http://www.inb.
uni-luebeck.de/tools-demos/gaze.
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