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Jiřı́ Lukavský # $

Institute of Psychology,
Academy of Sciences of the Czech Republic,

Prague, Czech Republic

Contrary to other tasks (free viewing, recognition, visual
search), participants often fail to recognize repetition of
trials in multiple object tracking (MOT). This study
examines the intra- and interindividual variability of eye
movements in repeated MOT trials along with the
adherence of eye movements to the previously described
strategies. I collected eye movement data from 20
subjects during 64 MOT trials at slow speed (58/s). Half of
the trials were repeated four times, and the remaining
trials were unique. I measured the variability of eye-
movement patterns during repeated trials using
normalized scanpath saliency extended to the temporal
domain. People tended to make similar eye movements
during repeated presentations (with no or vague feeling
of repetition) and the interindividual similarity remained
at the same level over time. Several strategies (centroid
strategy and its variants) were compared with data and
they accounted for 48.8% to 54.3% of eye-movement
variability, which was less then variability explained by
other peoples’ eye movements (68.6%). The results show
that the observed intra- and interindividual similarity of
eye movements is only partly explained by the current
models.

Introduction

Because high-acuity vision is limited to only a small
part of retina, humans constantly redirect eyes to
objects of their interest. The factors underlying this
highly variable behavior have been of great interest to
vision scientists for several decades.

In recent years, models based on saliency have
become popular, most likely because of the emergence
of quantitative models (e.g., Itti & Koch, 2000) that
allow comparisons between human performance and
predicted models solely based on low-level image
features with no or little respect to the content or
meaning of the scene. However, as Tatler (2009) noted,
there are several problematic aspects of this approach.
First, the correlations between prediction maps and
human performance are weak (e.g., Einhäuser, Spain,

& Perona, 2008; Nyström & Holmqvist, 2008; Tatler,
Baddeley, & Gilchrist, 2005). Second, a growing
number of studies show that low-level models fail if the
task is varied (e.g., Einhäuser, Rutishauser, & Koch,
2008; Foulsham & Underwood, 2008; Rothkopf,
Ballard, & Hayhoe, 2007).

The goal of this study is to measure the consistency
of eye movements in a simple repeatable task. In eye-
tracking studies, subjects are usually asked to simply
look at a scene (free viewing), remember a scene
(recognition), or search for a specific object (visual
search). Typically, performance across various scenes
and subjects is evaluated. The problem with these tasks
is that subjects cannot perform them meaningfully in a
repeated manner because subjects will recognize the
scene and look for previously unexplored areas of the
scene (in case of free viewing), encode additional details
(for later recognition), or find targets more efficiently
based on their previous experience. Similarly, Raney
and Rayner (1995) found that reading a passage of text
for a second time affects eye movements. However, to
successfully model eye movements, it is useful to
compare within-subject performance for particular
stimuli and sort out fixations that are important for the
task and those that are less likely to be repeated
(potential errors or noise).

Most likely due to difficulties related to finding
meaningful tasks, there are few studies of eye move-
ments during repeated presentations of visual stimuli.
Studies of contextual cueing (Chun & Jiang, 1998)
showed that implicit learning, which manifests as
reduced reaction times with more experience, takes
place during repeated presentations of visual search
trials. The contextual cueing is expected to efficiently
guide attentional deployment and thus affect eye
movements. Võ and Wolfe (2012) showed that repeated
searches for the same object in a scene led to faster
responses and the search space substantially decreased.
Additionally, they claimed that looking at the target
objects and scenes in a preview did not increase the
latter search performance. However, Hollingworth
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(2012) confirmed the preview effect using more sensitive
within-subject design.

In visual search or free viewing, subjects scan the
scene and may differ not only in the locations on which
they fixate but also in the temporal sequence of
fixations. It is difficult to determine which differences in
fixation order are random and which are influenced by
experimental conditions (e.g., change in guidance).

However, in tasks using dynamic stimuli (e.g., free
viewing a movie), variations in fixation order are more
likely to be significant, because they are attracted to
different content. Recently, Dorr, Martinetz, Gegen-
furtner, and Barth (2010) compared variability in free
viewing in dynamic natural scenes. Their results
showed high coherence between scan patterns during
repeated presentations in both movie trailers and
dynamic natural scenes. The highest coherence was
observed in the first presentation of each experimental
session; coherence decreased during later presentations
throughout the day. Dorr et al. (2010) suggested that
the decrease in coherence is caused by rising influence
of individual viewing strategies. Additionally, the task
is perhaps unclear when subjects watch a movie
repeatedly.

This study investigates the similarity of eye move-
ments between trials of a dynamic visual task called
multiple object tracking (MOT). This paradigm (Pyly-
shyn & Storm, 1988) has been used in a number of
studies of distributed attention (e.g., Alvarez &
Cavanagh, 2005; Horowitz et al., 2007) or visual object
qualities (for a review see Scholl, 2009). In MOT tasks,
the subject is presented with a set of uniform objects
and asked to track a specified subset (one to four
objects). After a short period of motion, tracking
performance is evaluated. My pilot experiments have
shown that subjects do not recognize when an MOT
trial is administered repeatedly; this phenomenon
makes MOT a good candidate for studying eye
movements in repeated visual presentations. Ogawa,
Watanabe, and Yagi (2009) investigated changes in
performance during repeated MOT tasks and reported
22%–31% recognition rates in their experiments using
15 trial repetitions.

In the majority of MOT studies, subjects are either
asked to fixate on the center of the screen and track
objects peripherally or they are allowed to move their
eyes freely. Recent studies of eye movements during
MOT (Fehd & Seiffert, 2008, 2010; Huff, Papenmeier,
Jahn, & Hesse, 2010; Zelinsky & Neider, 2008)
identified several gaze strategies: target looking and
centroid looking. The use of these strategies depends on
several factors, especially the number of tracked
targets. Zelinsky and Neider (2008) reported that target
looking is the main strategy for tracking a single target,
while centroid looking is the main strategy for tracking
two targets. With three targets, both strategies are used

equally, and with four targets, subjects tend to switch
between targets rather than looking at the centroid.
Fehd and Seiffert (2008) reported a high preference for
centroid looking in MOT tasks using three to five
targets (41.6%–42.4% of the tracking time) with target
looking being used much less frequently (8.1%–10.7%).
Fehd and Seiffert (2010) compared the combined
center/target-looking strategy to the target-looking
strategy and found significantly decreased performance
in the latter. They suggested that the target-looking
strategy is used mainly to prevent crowding and
showed that at the time of center-to-target gaze shift
the distractors are closer to targets compared to the
target-to-center gaze shifts. Huff et al. (2010) confirmed
the preference for centroid strategy in three targets
using stricter gaze classification. They found people are
faster to make a saccade toward the centroid than
targets when the task is interrupted with an abrupt
viewpoint change.

Previous studies referred to the term centroid, which
is ambiguous. Some studies (Fehd & Seiffert, 2008,
2010) defined the centroid as the center of mass of the
object formed by the targets. Zelinsky and Neider
(2008) defined the centroid as an averaged spatial
position of targets. Fehd and Seiffert (2008) point out
that these two methods yield identical results for three
targets but differ with higher number of targets. Both
methods are methodologically sound. Centroid of the
object (here referred as object centroid) has been used in
previous studies and represents the idea that people
might track the targets as a single object. However,
there is a problem with centroid calculation if targets
form a concave shape—one target is inside of the
triangle formed by other three targets—because the
object can be defined in three possible ways (see Figure
1). To resolve this ambiguity, I used centroid of convex
hull for concave configurations. The averaged spatial
position (target centroid) is a sound method to calculate
center of mass for finite set of points and it also
minimizes the sum of squared Euclidean distances
between itself and each target.

In a recent review, Schütz, Braun, and Gegenfurtner
(2011) suggested a four-layer model for the control of
saccadic eye movements based on a similar model of
action-perception loops described by Fuster (2004).
The proposed four layers are salience, object recogni-
tion, value, and plans. For MOT, it is difficult to fit the
tracking task to a single layer. Eye movement is
influenced by the content of the scene (distribution of
the objects); subjects likely try to optimize their viewing
position with respect to the spatial resolution of
attention (Intriligator & Cavanagh, 2001) and crowd-
ing. Eye-movement behavior may be of reflexive
oculomotor nature; however, its role in MOT tasks is
well defined and very important. Thus, subjects are
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likely to control their eye movements and adopt some
tracking strategies.

In the current study, I measured the interindividual
and inter-trial similarity of eye movements during
MOT. Four different types of comparisons were
performed. First, same-subject-same-trial (SSST) com-
parisons were made to evaluate the similarity between
eye movements of the same person in repeated visually
identical tasks. Second, same-subject-different-trial
(SSDT) comparisons were made to examine the
similarity of eye movements of the same person across
trials to evaluate potential individual strategies or
biases (e.g., looking at the screen center). Third,
different-subject-same-trial (DSST) comparisons were
made to measure the similarity of eye movements of
different people in a visually identical task. Finally,
different subject different trial (DSDT) was used as a
baseline condition to demonstrate the similarity of eye
movements across different people in various trials.

The current study pursued two main goals. First, I
wanted to evaluate the role of the task and the role of
individual strategies in eye movements during MOT.
Second, I wanted to compare the scan patterns with
several models to evaluate how much variance can be
explained by each model and how much variance

remains unexplained when compared to interindividual
(DSST) or intra-individual consistency (SSST). If there
is a single model that predicts eye movements for all
subjects, SSST consistency provides the upper bound
for the performance of the model. Additionally, DSST
consistency shows how successfully scan patterns in
MOT can be predicted based on the scan patterns of
other people.

Method

Participants

Twenty students from Charles University partici-
pated in this experiment for course credit. All
participants had normal or corrected-to-normal vision.
The mean age was 22.1 years. All experiments
conformed to National and Institutional Guidelines for
experiments in human subjects and with the Declara-
tion of Helsinki. Data from 28 participants were
originally collected, but data of eight participants were
removed (six due to calibration problems or large
numbers of blinks and two because of very low tracking
accuracy).

Apparatus and stimuli

Stimuli were presented on a 19-in CRT monitor with
1024 · 768 resolution and 85 Hz refresh rate, using
MATLAB script with Psychophysics and Eyelink
Toolbox extensions (Brainard, 1997; Cornelissen,
Peters, & Palmer, 2002; Kleiner, Brainard, & Pelli,
2007; Pelli, 1997). Participants viewed the screen from a
distance of 50 cm, and their head movements were
restrained using a chinrest. They responded using a
computer mouse.

Tracking stimuli comprised of eight mid-gray disks
(RGB value: 128 128 128) on a black background
(RGB value: 0 0 0). Each disk subtended 18 of visual
angle and moved at a fixed speed of 58/s. The disks were
confined to move within an invisible square (208 · 208)
and bounce off the invisible square boundaries and one
another with a minimum interobject distance of 0.58.
Besides bouncing the direction of disks was sampled
from von Mises (circular Gaussian) distribution with
parameter j¼ 10 every 100 ms, creating an impression
of Brownian motion (Supplementary Video shows the
repeated trials including the recorded gaze positions).

Eye position was recorded at 250 Hz using Eyelink II
eye tracker (SR Research, Canada). Drift correction
was performed before each trial, and a nine-point
calibration was completed after every 16 trials.

Figure 1. Problem with the definition of the object centroid

when targets form a concave configuration. The object shape

can be interpreted in three possible ways (Options 1–3), each

yielding a different prediction of centroid (red cross). This

ambiguity can be resolved by using a centroid of convex hull

(green cross) for concave configurations.
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Design and procedure

After six training trials, each subject completed 64
experiment trials. In each trial, participants were asked to
fixate on a central point (used for drift correction), and
then eight objects were presented. Four target objects
were highlighted with a light green color for 2 s (RGB
value: 0 255 0), and then all objects turned mid-gray and
started moving. After 10 s, objects stopped moving and
participants selected four tracked objects with the mouse.
After they made their choice green word ‘‘OK’’ or the
number of errors in red was shown for 500 ms. The
participants were instructed to track all four targets
carefully and not to deliberately limit their tracking to a
subset. They were told that the trial is considered correct
only if all targets are successfully identified.

Experimental trials were presented in four blocks;
calibration was completed at the beginning of each
block. In each block, the odd-numbered trials were
unique trials, which were presented only once during
the experiment. The even-numbered trials were re-
peating trials, which were presented once in every block
(i.e., four times over the course of the experiment). The
trial order used in each condition was random; this
semiregular structure was used to ensure that no two
repeating trials would be presented consecutively.
Thus, eight repeating trials were administered four
times each throughout the experiment.

The experiment consisted of 40 trajectories generated
in advance. Two protocol versions were administered,
which differed in the assignment of unique/repeating
tracks—the eight repeating trajectories in Version 2
were unique trajectories in Version 1. Thus the data
about sixteen different repeating trajectories were
collected. To minimize the chance participants would
remember a particular start or end configuration of
objects, all prepared trajectories were 12 s long and
their 10-s presentation began in a random time between
0 and 2 s, which means that all presentations of the
same trajectory across repetitions or participants share
a common segment of 8 s (2–10 s).

The experiment lasted approximately 45 min, after
which participants were asked about their tracking
strategies, asked whether they noticed the repetition,
and given a recognition test. The recognition test
consisted of eight repeating trajectories, eight unique
trajectories, and eight novel trajectories in random
order. The participants were asked whether they had
seen the presented trial in the experiment (irrespective
of number of possible occurrences).

Data analysis

Blink detection

Recorded eye-movement data preceding and fol-
lowing a blink tend to contain artifacts, because the

pupil is partially occluded by the eyelid. These artifacts
(seen as sudden eye movements downwards and
upwards) were partially detected automatically and
removed. All data were checked manually to remove
remaining blink artifacts. Trials containing more than
10% missing data were discarded. A total of 1,260 trials
(98.4%) were included in the analysis (20 trials were
discarded because of blinks, missing data, or technical
problems).

Data preparation

The collected eye-movement data ranged from�108
toþ108 in horizontal and vertical dimensions and from
2 to 10 s in time (time segment shared across all
presentations). Because subjects often track objects
using smooth pursuit eye movements during MOT, this
type of movement is also of interest. Therefore, no
fixation detection was performed, and all data samples
were included. To facilitate further analyses, the data
for each subject and trial were binned in a 3-D
spatiotemporal matrix; bin size was 0.258 · 0.258 · 10
ms. The value of each bin represented the number of
corresponding eye-movement samples.

To compare the changes in type of eye movements
during the experiment, saccades were identified in the
recorded data in a two-step procedure. First, the
samples with velocity exceeding a high threshold (1008/
s) were considered as saccade candidates. Then, the
saccade onset and offset were found by adding all
adjacent samples exceeding a lower threshold (178/s).

Normalized scanpath saliency

Scan pattern similarity was measured with normal-
ized scanpath saliency (NSS) similar to the procedure
used by Dorr et al. (2010). In this procedure (see Figure
2) the similarity within a group of scan patterns is
evaluated using a ‘‘leave-one-out’’ procedure used in
machine learning: In each step one scan pattern is
compared with the saliency map constructed using all
other scan patterns. In other words, we estimate how
well one scan pattern can be predicted based on the
remaining scan patterns. This process is repeated and
the similarity within a group of scan patterns is
calculated as mean similarity found in each step.

Specifically, let us suppose that in a given step we
compare Scan Pattern A with other patterns B, C, and
D. First, the spatiotemporal saliency map was con-
structed. Eye-movement samples from B to D were
transformed into a single spatiotemporal data matrix
(see Data preparation) and convolved using a spatio-
temporal Gaussian filter (rx¼ ry¼ 1.28 and rt¼ 26.25
ms). These parameters were utilized to match the
procedure used by Dorr et al. (2010), but to ensure the
analysis is not dependent on the particular values,
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additional analyses were made using half-sized filter
(rx¼ ry¼ 0.68, rt¼ 13.125 ms) and double-sized filter
(rx¼ry¼ 2.48, rt¼ 53.0 ms), and both led to the same
pattern of results.

Second, the obtained spatiotemporal matrix was
normalized. The similarity index for a given step was
calculated as the mean of the saliency map values,
which corresponded to the time-places of the Scan
Pattern A. This process was repeated with Scan Pattern
B compared to A, C, and D, etc. Finally, the NSS score
representing the similarity within the group was
calculated as the mean of similarity index found over
all steps.

The NSS score is influenced by the number of scan
patterns used to construct the saliency map. Using
more scan patterns creates a saliency map that is finer
with values distributed over larger areas. The peak
scores are lower, but in general, a larger proportion of

gaze samples to a larger area is considered in
concordance with the saliency map. Because the
number of possible scan patterns included in the
analysis varied (from 4 for SSST, 20 for DSST, to
hundreds for DSDT baseline), I performed the analysis
first using all possible scan patterns. Later, I sampled
only four scan patterns. The first approach yielded
mean NSS scores that were on average 0.42 greater
(range: 0.28–0.51). In the text to follow, when
comparing eye-movement similarity in different com-
parison perspectives, I report the results obtained via
sampling four scan patterns to account for these
differences.

Later NSS is used to test the coherence of four
repeated trials with a scan pattern based on a strategy,
i.e., five scan patterns are compared instead of four. To
investigate whether it is possible to compare the values
based on four scan patterns (e.g., SSST) and five scan

Figure 2. The procedure comparing one target scan pattern (A1) with other three (A2). First, eye-movement samples were binned to a

spatiotemporal matrix (bin size 0.258 · 0.258 · 50 ms) and convolved using a three-dimensional Gaussian filter (B). Finally, the

spatiotemporal matrices were summed and normalized into a spatiotemporal saliency map (C) and the partial NSS coherence index

was calculated as the mean of the values corresponding to the time-places of the target scan pattern (A1). This process was repeated

for each of the four scan patterns (the leave-one-out method) and the final NSS coherence index was measured as the mean of the

four partial indices.
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patterns (coherence with a strategy), I compared the
NSS values based on sampling four and five patterns.
With more patterns involved, NSS values are signifi-
cantly larger, diff ¼ 0.036, t(1739) ¼ 2.379, p ¼ 0.017,
Cohen d¼ 0.03 6 0.07, however the effect is very small
and thus I consider the NSS values comparable.

For SSST comparisons, the final NSS coherence
index was calculated as the mean of four related partial
coherence indexes from the leave-one-out procedure
described above. For the other comparisons (DSST,
SSDT, DSDT), I calculated only the partial NSS
coherence index (i.e., how the scan pattern in the
particular block can be predicted by scan patterns of
other people or scan patterns from other trials) and
calculated the mean for all four repetitions of each trial.

Strategies

Five strategies were included in the analysis, and
their coherence with the data was evaluated (see Figure
3). The constant strategy was a simple strategy of
looking at the center of the screen, which may indicate
attentional tracking targets without eye movements.
This strategy was the only strategy that predicted the
same (constant) pattern of eye movements for all trials.
In the all-points-centroid strategy, observers attempted
to minimize the eccentricity of each object falling on the
fovea (both targets and distractors). Similarly, in the
target-centroid strategy, observers attempted to mini-
mize the eccentricity of targets while ignoring distrac-
tors. In both of the latter strategies, eccentricity
minimization was operationalized as a search for the
minimum sum of the squared distances between the
gaze point and the object positions and could be easily
calculated by averaging the spatial positions of points
(similarly to Zelinsky & Neider, 2008). In the object-
centroid strategy, observers tracked the centroid of the
planar object formed by four targets (Fehd & Seiffert,
2008, 2010). When one target was located inside the
triangle formed by other three targets, the object
centroid was defined as the centroid of the convex hull

(i.e., triangle). In the anticrowding strategy, observers
attempted to minimize the ratio between each target’s
distance from the gaze point and distance from every
distractor. The idea behind this strategy was that the
observer would try to minimize the effect of crowding
and thus reduce the danger of losing a target. Despite
the majority of previous studies have reported the use
of centroid strategy, where the positions of distractors
are ignored, recent studies show people take crowding
into account. Iordanescu, Grabowecky, and Suzuki
(2009) found that people are more precise in localizing
targets in crowded situations. Similarly, Zelinsky and
Todor (2010) reported that people tend to look closer
to the targets that are in the proximity of other objects.

Each strategy adds additional information from the
scene. The constant strategy uses information about the
position of the bounding rectangle with no respect to its
content; the all-points-centroid strategy reflects object
motion but does not distinguish targets and distractors,
which the target-centroid, object-centroid, and anti-
crowding strategies do. The anticrowding strategy
recognizes targets and employs additional expectations
about the human ability to distinguish objects in the
periphery of the visual field. I expected the lowest
performance in constant strategy, followed by all-
points-centroid, with all other strategies performing
better with no a priori expectations about their order.
The aim of this study was to estimate the variance
explained by these models compared to the reliability of
eye movements in observers, not to differentiate
between the models.

Results

Tracking performance

Accuracy was defined as the percentage of trials in
which participant correctly identified all four targets

Figure 3. Strategies used in the analysis. (a) constant strategy—looking at the center of the screen, (b) all-points centroid—minimizing

the distance to all objects, (c) target centroid—minimizing the distance to targets, (d) object centroid—center of mass of planar object

defined by targets or their convex hull, and (e) anticrowding—minimizing the ratio of the distance of each target to the gaze point and

distractors. Targets are shown as green circles, distractors as white circles, and the predicted gaze point as a diamond.
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(chance¼ 1.43%). The average percent correct across
all participants was 91% (ranging from 77% to 100%).
The accuracy did not depend on either time (order of
experimental block) or condition (repeating or unique):
within-subject analysis of variance (ANOVA) on
accuracy showed no significant effects of experimental
block, F(3, 57)¼1.34, p¼ 0.271, gG

2¼0.027, condition,
F(1, 19) ¼ 1.73, p ¼ 0.203, gG

2 ¼ 0.009, or their
interaction, F(3, 57)¼ 2.16; p¼ 0.103, gG

2 ¼ 0.033.
For the following analysis I used data from the trials

where participants correctly identified all targets (1,148
of 1,280 trials). The only exception is SSST compari-
son, where I included incorrect trials to retain four
trials in each NSS comparison (1,260 of 1,280 trials)
and later estimated how much it biased the results.

Effect of repetition

After experiment 7 of 20 participants reported they
felt that some trials were repeated. In the recognition
test participants were presented with 24 trials, which
belonged to one of three conditions: (a) repeated trials
(seen four times), (b) unique trials (seen once), (c) novel
trials (never seen). Participants correctly reported they
had seen 47% of repeating trials and 39% of unique
trials. However the false alarm rate—reporting novel
trials as previously seen—was very high (44%).

Within-subject ANOVA showed that a participant
reporting a trial as previously seen was not influenced
by the condition (i.e., whether the trial had been
presented four times, once or not at all), F(2, 38)¼0.80,
p¼ 0.455, gG

2 ¼ 0.020. There was no difference in
recognition performance between participants who
reported they noticed some repetitions and those who
did not, ANOVA with additional binary factor,
reported repetitions, F(1, 18) ¼ 0.004, p ¼ 0.952, gG

2 ¼
0.000; condition: F(2, 36) ¼ 0.795, p¼ 0.460, gG

2 ¼
0.021; no significant interaction, F(2, 36) ¼ 0.792, p¼
0.461, gG

2¼ 0.021. Both groups did not differ in their
tracking performance either, t(15.01)¼0.382, p¼0.708,
d¼ 0.17 6 0.92.

Eye-movement similarity

The results show that task (trial) played a more
dominant role compared to subject and his/her
individual strategies (see Figure 4). The NSS coherence
for the four possible comparison types was analyzed
using repeated measures ANOVA with comparison
type as the single categorical predictor and observa-
tions matched for subject and trial combinations. Three
planned contrasts were performed to evaluate the effect
of task/trial (SSST vs. SSDT), the effect of interper-
sonal differences (SSST vs. DSST), and whether

coherence in the same subject across different trials
differed from baseline (SSDT vs. DSDT).

The analysis showed that coherence depended on
comparison type, F(3, 477) ¼ 835.15, p , 0.001, gG

2 ¼
0.754. As expected, the greatest amount of coherence
was found in intra-individual performance while
watching identical trials repeatedly (SSST: M ¼ 3.89,
SD¼ 1.19). The second greatest amount of coherence
was found in different subjects while watching the same
trials (DSST: M ¼ 2.86, SD¼ 0.91). The difference
between coherence in SSST and DSST was significant,
t(159)¼ 12.96, p , 0.001, Cohen d¼ 0.97 6 0.23, which
means that the interindividual coherence within a trial
was significantly lower than the intra-individual co-
herence (diff ¼ 1.03). Coherence in the same subject
watching different trials was much lower (SSDT: M ¼
0.66, SD ¼ 0.47) and significantly different from
coherence in the SSST comparison, diff¼ 3.23, t(159)¼
34.02, p , 0.001, d¼ 3.57 6 0.35. SSDT coherence did
not differ significantly from the baseline, diff ¼ 0.06,
t(159) ¼ 1.46, p ¼ 0.145, d¼ 0.14 6 0.22; baseline
DSDT: M ¼ 0.60; SD ¼ 0.42. The lack of significance
may indicate that in the current experimental condi-
tions, subjects actually tracked objects using eye
movements; if subjects fixated on the center of the
screen and tracked the targets using only their visual
attention, eye-movement coherence of unrelated trials
would be higher.

Figure 4. Normalized scanpath saliency scores for different

comparisons of eye-movement similarity. SSST ¼ same subject

same trial, DSDT¼ different subject different trial. Error bars

show 95% confidence intervals.
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I also analyzed the intra-individual variability of the
NSS coherence across trials. I limited the scope of the
analysis to the SSST and analyzed the differences in
two separate one-way ANOVAs. The first ANOVA
used subject as a categorical predictor, and the second
ANOVA used trial id as a categorical predictor (with
16 levels). I found significant differences in intra-
individual coherence across subjects ranging from 1.65
to 5.37, M ¼ 3.89, SD ¼ 0.92, F(19, 140) ¼ 9.702, p ,
0.001, g2 ¼ 0.568. In other words, some subjects were
more likely to repeat a pattern of their eye movements
than other subjects. The differences in intra-individual
coherence between different trials were not significant,
F(15, 144)¼ 1.061, p¼ 0.398, g2¼ 0.100. A significant
result would mean that some trials elicit more coherent
eye movements than others (given the selection of trials
in the present experiment).

I examined whether the eye movements of different
people became more similar or diverse over time. The
mean NSS value from the DSST comparison for each
block ranged from 3.04 (Block 1) to 3.38 (Block 2). To
estimate the effect of time I averaged the corresponding
NSS values from the first two blocks and last two
blocks and compared them with paired t test. No
significant changes in interindividual eye-movement
similarity were observed over time, t(31) ¼ 0.541, p¼
0.593, d ¼ 0.07 6 0.49.

In order to find out whether the repetition affects the
type of eye movements, I analyzed the changes in
number of saccades, total time occupied by them, and
their median length in both repeating and unique trials.
During average trial participants made 9.86 saccades
(SD ¼ 5.58) with median length 3.248 (SD¼ 1.35),
which occupied 330 ms (SD ¼ 220) of total 8 s. To
estimate the effect of time I grouped the data from the
first two blocks and last two blocks and used repeated
measures ANOVA with two factors (condition: re-
peating/unique, and time). I found a significant
decrease in number of saccades over time, F(1, 19) ¼
5.178, p ¼ 0.035, gG

2 ¼ 0.010, no effect of condition,
F(1, 19)¼ 1.689, p¼ 0.209, gG

2¼ 0.001, and significant
interaction, F(1, 19)¼ 7.092, p ¼ 0.015, gG

2¼ 0.002,
showing the number of saccades decreases faster in
unique trials. For the total time occupied by saccades
there was a significant interaction, F(1, 19)¼ 5.644, p¼
0.028, gG

2¼ 0.001, with no effect of time, F(1, 19) ¼
3.727, p ¼ 0.069, gG

2 ¼ 0.007, or condition, F(1, 19)¼
1.336, p¼ 0.262, gG

2¼ 0.001. There was no significant
effect for median saccade length, time: F(1, 19)¼ 0.460,
p¼ 0.501, gG

2¼ 0.002; condition: F(1, 19)¼ 2.746, p¼
0.114, gG

2¼ 0.008; interaction: F(1, 19) ¼ 1.503, p¼
0.235, gG

2¼ 0.002. The results show a decrease in
number of saccades during experiment, which was
larger in unique trials. This decrease is partly mirrored
in less total time occupied by saccades. The length of
saccades did not change over time.

In SSST comparison incorrect trials were included to
retain the number of trials in each NSS calculation and
keep the results comparable. I compared the NSS
values for SSST comparisons with and without any
error. The majority of comparisons contained no error
(122 of 160) and yielded slightly higher NSS values, M
¼ 3.99, SD¼ 1.18, with errors: M ¼ 3.56, SD ¼ 1.20,
t(60.6) ¼ 1.945, p¼ 0.056, d ¼ 0.37 6 0.37. Therefore
adding incorrect trials lowered NSS coherence in SSST
approximately by 0.1.

To provide additional insight into NSS values and
their relationship to actual gaze positions, I repeated
the analysis using a different approach based on gaze
distances. I used the same comparisons as in the
previous analysis, but I compared scan patterns using
their mutual distances in every frame. For each frame
(85 Hz) I calculated all distances between scan patterns
involved in the comparison. Because in each frame
several gaze samples (up to three) were present, I
included only the first sample in the analysis. Then I
calculated the mean, median, minimum, and maximum
distance in each frame and the median values of these
parameters over all frames in each trial. The following
results are based on the analysis of mean distances, but
all four parameters were highly correlated and yielded
similar results.

The analysis based on gaze distances confirmed the
results based on NSS (see Figure 5a). In SSST
comparison the mean gaze distance was 2.518 (SD¼
1.07), which was significantly smaller than in DSST
comparison, M¼ 3.09, SD¼ 0.71, t(159)¼ 12.117, p ,

0.001, Cohen d¼ 0.93 6 0.23. The mean gaze distances
in SSDT comparison were not significantly different
from DSDT condition, M ¼ 5.75, SD ¼ 0.95, t(159)¼
1.324, p ¼ 0.188, d¼ 0.12 6 0.22, and significantly
larger than in SSST comparison, t(159)¼ 32.927, p ,

0.001, d ¼ 3.45 6 0.35.
Figure 5b shows the relationship between mean gaze

distance and NSS measures. Despite differences in
calculations and the limitations discussed later, both
measures show good fit—NSS varied logarithmically
with mean gaze distance (R2¼ 0.885 6 0.017).

Strategies

The four observed scan patterns for each subject and
each trial were compared using NSS with idealized scan
patterns representing the predicted eye movements for
each strategy (constant, all-points centroid, target
centroid, object centroid, anticrowding). Table 1 shows
distances between predicted gaze positions for each
strategy calculated across all frames and all 40
trajectories used in the experiment (both repeating and
unique).
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In 29% of all frames the targets were in a concave
configuration and object centroid was calculated for the
convex hull of the targets. As explained before in
concave configurations the object shape can be
interpreted in three possible ways (see Figure 1), each
yielding a different prediction of centroid. The predic-
tions can be far from each other—for each frame I
evaluated their spread using maximum distance. The
median spread across all frames with concave config-
urations was 3.588 (the first and third quartiles [2.81;
4.47], maximum 7.63).

Then, I compared the distances between the centroid
of the convex hull and each of three possible
predictions for every frame. I constructed three types of
error estimates by selecting minimum, median, or
maximum distance for each frame. For the optimistic
estimate (minimum distance) the median error across
all frames with a concave configuration was 0.378 (the
first and third quartiles [0.18; 0.60], maximum 1.53).
The balanced estimate based on the median distance
yielded median error 1.188 ([0.92; 1.58], maximum
3.26). For the pessimistic estimate (maximum distance)
the median error was 2.358 ([1.78; 2.98], maximum
6.13).

The coherence between the observed data in
repeating trials and the predictions based on the
selected strategies is shown in Figure 6. NSS results for
baseline (DSDT) and intra-individual consistence
(SSST) are added for comparison. I used a paired t test
to compare the fit between different models in each
subject and trial type. The reported p values have been
adjusted for multiple comparisons using the Bonferroni
correction (11 tests).

The coherence between the constant strategy and the
data was significantly higher than DSDT baseline,
t(159) ¼ 3.906; p¼ 0.001; Cohen d¼ 0.38 6 0.22. As
expected, adding extra information to the strategy
improved its coherence with the data: the all-points-
centroid strategy was better than the constant strategy,
t(159) ¼ 9.809; p , 0.001; d¼ 0.86 6 0.23, and all
remaining strategies overperformed all-points-centroid
model, object centroid: t(159) ¼ 6.487; p , 0.001; d ¼
0.51 6 0.22; target centroid: t(159)¼ 8.530; p , 0.001;
d¼ 0.68 6 0.23; anticrowding: t(159) ¼ 7.078; p ,
0.001; d¼0.68 6 0.23. However, the difference between
these strategies and intra-individual coherence was still
very large, object centroid: t(159)¼ 14.21; p , 0.001; d
¼ 1.42 6 0.25; target centroid: t(159) ¼ 12.68; p ,

Figure 5. (a) Eye-movement similarity based on mean gaze distance for different comparisons. Error bars show 95% confidence

intervals. (b) Normalized scanpath saliency varied logarithmically with mean gaze distance.

All points centroid Target centroid Object centroid Anticrowding

Constant 2.15 [1.37; 2.98] 3.06 [1.84; 4.47] 2.91 [1.90; 4.19] 4.33 [2.83; 5.99]

All-points centroid 2.36 [1.39; 3.22] 2.27 [1.37; 3.08] 3.20 [2.10; 4.46]

Target centroid 0.71 [0.42; 1.05] 2.64 [1.67; 3.95]

Object centroid 3.14 [1.96; 4.60]

Table 1. Median distances between predicted gaze positions for each pair of strategies. The first and third quartiles are shown in
brackets.
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0.001; d¼ 1.26 6 0.24; anticrowding: t(159)¼ 13.85; p
, 0.001; d ¼ 1.46 6 0.25.

The differences between object centroid, target
centroid, and anticrowding strategy were small, object-
centroid versus anticrowding: t(159)¼ 0.903; uncor-
rected p ¼ 0.368; d¼ 0.09 6 0.22; anticrowding versus
target centroid: t(159)¼ 0.783; uncorrected p¼ 0.435; d
¼ 0.07 6 0.22; object centroid versus target centroid:
t(159)¼ 6.174; p , 0.001; d¼ 0.15 6 0.22. The absolute
values of NSS coherence for these three strategies
ranged from 2.22 (SD¼ 1.19) for object-centroid
strategy to 2.39 (SD¼1.20) for target-centroid strategy.

The coherence of a given strategy may also be
expressed relative to the variability in the observed
data. I rescaled the NSS values to the scale from 0%
(DSDT) to 100% (SSST) to calculate how much
variance each strategy explained above the baseline
condition using the maximum coherence observed in
our subjects. The constant and all-centroid strategies
explained 7.5% and 31.5% of eye-movement variance,
respectively. The more successful strategies, object
centroid, anticrowding, and target centroid, explained
48.8%, 51.2%, and 54.3% of the variance, respectively.
For comparison, predictions based on other peoples’
eye movements (DSST condition) would explain 68.6%
of the variance.

In order to test the coherence with strategies over a
wider selection of trajectories, I calculated NSS values
for each strategy and each individual trial (i.e., not
based on four repetitions of the same trial) and
included the data from unique trials. Because the
repeating trials would be presented four times and

overweigh the unique trials, I selected only the
repeating trials from the first block, when the
participants first encountered them. The final set
consisted of 712 correctly answered trials. The observed
coherence did not differ in repeating and nonrepeating
trials, t(961.9)¼ 0.992, p ¼ 0.321, d ¼ 0.04 6 0.09.

I focused on object-centroid, anticrowding, and
target-centroid strategies, which were very similar in
the previous analysis; with a wider selection of trials the
differences were more apparent but still small (see
Figure 7). The coherence of target-centroid strategy
was higher than coherence of object-centroid strategy,
t(711)¼ 13.888, p , 0.001, d¼ 0.19 6 0.10, and smaller
than anticrowding strategy, t(711)¼ 4.705, p , 0.001, d
¼ 0.19 6 0.10.

Using the same selection of trials, I confirmed the
differences between the strategies by comparing the
time spent in dynamic areas of interests defined by the
strategies, targets, and distractors (Huff et al., 2010;
Papenmeier & Huff, 2010). In every frame each
predicted position defined a circular area of interest
(AOI) with 18 radius. Additional AOIs were similarly
defined for each target and distractor. Figure 8 shows
proportion of time in each trial spent in each AOI.
Participants spent most of the time looking at any of
four targets (12.6%, or 3.1% per target), while they
spent only 4.0% of time looking at distractors. In
accord with the previous results, the anticrowding
strategy showed the best fit (12.2%) compared to the
target-centroid strategy, 9.0%, t(711) ¼ 7.268, p ,
0.001, d ¼ 0.34 6 0.10, or object-centroid strategy,
7.7%, t(711)¼ 10.135, p , 0.001, d¼ 0.50 6 0.11. The

Figure 6. Coherence between selected eye-movement strategies in multiple object tracking and observed data. Coherence measured

using NSS, differences tested with Student’s t test and corrected for multiple comparisons. For clarity, the comparisons with object-

centroid, anticrowding, and target-centroid strategies are grouped.
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difference between the target-centroid and object-
centroid strategies was significant, but small, t(711) ¼
5.697, p , 0.001, d ¼ 0.14 6 0.10. The observed
proportions are lower than the proportions reported by
previous studies, which utilized so-called ‘‘shortest
distance rule’’ (Fehd & Seiffert, 2008; Zelinsky &
Neider, 2008) but comparable to the values found with
dynamic AOI approach (Huff et al., 2010).

When I compared whether people start to differ over
time (between first two blocks and last two blocks), I
found no significant effect of time, F(1, 19)¼ 0.182, p¼
0.674, gG

2 , 0.001, and no significant Time · Strategy
interaction, F(6,114)¼ 0.879, p ¼ 0.513, gG

2¼ 0.005.

Discussion

I compared the similarity of eye movements made
during MOT from various perspectives and found a
considerable amount of scan pattern similarity when
the same MOT task was repeated, both within the same
person and across different observers. Intra-individual
and interindividual similarity cannot be explained
solely by simple strategies derived from the previous
studies; this outcome suggests that other aspects of the
scene are utilized.

How precisely do people repeat their eye move-
ments? I found that the mean gaze distance over
repetitions of the same trial is approximately 2.58 (for
illustration, the diameter of each stimulus was 18).
Some part of this variability can be attributed to the
measurement error of the eye tracker; however, the
results show that people are likely to repeat their eye
movements, but the task does not require them to be
too accurate in planning their gaze.

The results show a significant relationship between
NSS and distances between gaze points in each frame.
Both methods are similar as they take the distances into
account compared to gaze classification approaches
based on AOIs, where the distance is reduced to a

Figure 7. Coherence between selected eye-movement strategies

in MOT and observed data based on both repeating and unique

trials (individual trials).

Figure 8. Gaze on AOIs defined by targets, distractors, and predictions of selected strategies. AOIs defined by targets and distractors

are four times larger. Error bars show 95% confidence intervals.
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Downloaded from jov.arvojournals.org on 04/25/2024



binary factor. On general level NSS provides a single
number representing the similarity of two or more scan
patterns (using ‘‘leave-one-out’’ method). In contrast,
the distance approach yields a similarity measure (e.g.,
mean distance) for each frame, which needs to be later
summarized in some manner. Both approaches are
partly convertible. The multitude of results can be
achieved in NSS by calculating values not for entire
scan pattern but for its floating subsets (e.g., from�200
ms to þ200 ms for each time step). Due to spatiotem-
poral filtering NSS method detects similarity not only
between gaze samples in the same frame but also over
several proximal frames. This feature can be achieved
by calculating distances between gaze points for
varying lags.

There is no obvious metric for eye-movement
similarity; how it should scale under various circum-
stances and every proposed metric includes some design
decisions. Both NSS and distance approach share
similar underlying assumptions. If two scan patterns
involve only two gaze locations, but they strictly
alternate in time, the scan patterns will be considered
substantially different. Similarly, if two people follow a
single but different target throughout a trial, their
strategies will be also considered to be different.
However, in the context of MOT task, these assump-
tions seem plausible.

I did not find changes in eye-movement similarity
during repeated presentations of MOT trials. In an
experiment with repeated presentations of movie
trailers and dynamic natural scenes, Dorr et al. (2010)
presented each movie 10 times (five times for two
consecutive days). These authors found that coherence
was highest in the first presentation and gradually
decreased in later presentations within each day. The
amount of initial coherence and variability was
comparable between the first and second days. They
concluded that individual strategies had an increasing
influence on coherence with repeated viewings. The
presented results suggest that in MOT, eye movements
are defined strongly by the demands of the task;
subjects do not use individual strategies in later
presentations. In contrast, if subjects are instructed to
‘‘watch a movie attentively,’’ they may feel the urge to
scan the scene for details, which they had not attended
in previous presentations. The potential increase of
coherence in repeated MOT would suggest that subjects
are learning during the course of experiment. Learning
can occur either on a skill level (people converge to a
similar strategy) or on a trial level (people become more
confident in particular situations of crowding; thus,
they make fewer rescue saccades). The first type of
learning would be evident if adherence of eye move-
ments to a particular strategy increased over time as
well as in nonrepeated trials; however, this was not

observed in the current study. In general people started
to make fewer saccades throughout the experiment.

Previous experiments (Makovski, Vázquez, & Jiang,
2008; Ogawa et al., 2009) showed that people improve
in MOT if the assignment of targets and distractors is
retained. Although Makovski et al. (2008) reported
that the strongest learning effects form within the first
few repetitions, their task was much more difficult
(similar presentation time, but the object speed was
22.58/s compared to 58/s). Ogawa et al. (2009) increased
the difficulty by asking subjects to track more objects (5
of 10); they observed that the largest learning effect
occurred between the first and second epoch (Repeti-
tions 1–3 and 4–6). Both studies showed that successful
recognition of repeated trials did not lead to better
performance in MOT tasks. In the current study, 7 of
20 participants reported they noticed that some trials
were repeated, which is similar to the proportion
reported by Ogawa et al. (2009). This report probably
reflects only a general impression from the experiment,
because participants were not able to distinguish
between repeating and novel trials in a recognition test.

I kept the task relatively easy compared to the
majority of MOT studies, because I thereby attempted
to encourage subjects to make eye movements.
Different experimental conditions (faster object speeds)
in which people tend to use less eye activity and follow
the objects attentionally only prompt increased inter-
individual and intra-individual eye-movement similar-
ity. Therefore, I compared the eye-movement patterns
with the model predicting constant central fixation for
each trial. I found very low similarity (this model
explained only 7.5% of the variance within eye
movements) and thus, we may conclude that central
fixation did not contribute to the observed similarity in
the present study. I used an object speed of 58/s because
pilot experiments showed that subjects move their eyes
during trials, which may change if objects move with
greater speed.

MOT studies that ask subjects to fixate on a central
point and track objects without moving their eyes have
shown that people can perform an MOT task without
eye movements. In the current study, I have shown that
when eye movements are allowed, they are character-
istic of a trial (i.e., for the objects’ positions and
trajectories).

In the presented analysis, I compared various eye-
movement strategies for MOT with interindividual and
intra-individual consistency. It is important to note that
both types of results are comparable despite some
differences. In the first case, we have a well-defined
model and compare its predictions with the observed
data; however, there is no clear prediction in case of
inter- or intra-individual consistency. Nevertheless, the
consistency results are defined as predictions we can
make based on knowing three scan patterns (averaged
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across all four scan patterns using the leave-one-out
method). We can imagine that on average any of the
observed scan patterns outperforms the predicted
strategies in each trial.

Previous studies of eye-movement strategies in MOT
(Fehd & Seiffert, 2008, 2010; Zelinsky & Neider, 2008)
classified gaze samples based on gaze proximity to
targets, distractors, and target centroids. These studies
compared the time spent in each region of interest. For
four targets, Zelinsky and Neider (2008) reported that
participants spent 24% of scanning time near the
centroid and 52% of the time on the targets; this ratio
varied with the number of targets. Fehd and Seiffert
(2008) reported longer times fixated near centroids in
their follow-up experiment (42% of the time) compared
to the time spent on targets (9% of the time). Huff et al.
(2010) used stricter gaze classification using areas of
interest of the size equal to the object size. While this
classification explained about 35%–47% of gaze, about
10% of gaze was identified as toward centroid. In the
presented study I compared the coherence of several
strategies with eye-movement data first using NSS and
later confirmed the results using the dynamic areas of
interest (Huff et al., 2010; Papenmeier & Huff, 2010).
Compared to gaze classification approaches, smooth
comparisons using NSS allow comparing the strategies
to natural variance in eye movements during an MOT
task. Considering the observed intra-individual vari-
ability it seems beneficial to use an approach that is not
dependent on the exact sizes of AOIs.

In the current study I tried to clarify the differences
between various definitions of centroid. In previous
studies two approaches were employed. First, the
centroid was calculated for the solid object defined by
the targets (Fehd & Seiffert, 2008, 2010). However the
shape of solid object is ambiguous for concave
configurations (with more than three targets). To
overcome this limitation, I suggested calculating the
centroid for a convex hull defined by targets. Second,
the centroid can be calculated for a finite set of points/
targets (Zelinsky & Neider, 2008), which is also the
point with minimum sum of squared Euclidean
distances between itself and each target. In the
trajectories used in the current experiment the differ-
ences between predictions of both approaches were
relatively small (median distance 0.718).

Both centroid models are based solely on the
positions of targets. Interestingly, their predictions
differed more from the predictions of anticrowding
model that demonstrated better coherence with gaze
data on a larger selection of different trials (with both
unique and repeating trials). The particular definition
of the crowding optimization function can be discussed,
but the result shows that people take the distractor
positions into account.

There are several ways to improve the models of eye
movements in MOT. First, while the gaze classification
approach reports looking on targets, the employed
models rarely predict such events and prefer some
central position. Fehd and Seiffert (2010) speculated
that participants shift their gaze from the center
position to a target when distractors crowd the targets.
In an experiment using occluding objects in an MOT
task, Zelinsky and Todor (2010) found that subjects
make fewer rescue saccades (saccades towards targets
that are in danger of being lost) as the distance to the
next closest object increases. In the current experiment,
eye movements were a mixture of smooth pursuit and
saccadic movements. Saccades disrupt visual process-
ing; observers likely fail to detect changes in the scene
during saccades, and their perception of space and time
is affected (Morrone, Ross, & Burr, 2005; Ross,
Morrone, Goldberg, & Burr, 2001). Advanced models
could account for the costs of saccades, e.g., predicting
that observers make saccades towards targets (or other
more distant locations within the display) only when
the danger of losing track of them while at the current
gaze spot is greater than the danger related to making
the saccade.

Second, the strategies proposed in the current study
are static; they make predictions based only on the
objects’ positions in the current frame. Do people
predict the positions of tracked objects? Previous
studies in which objects disappear during MOT
(Fencsik, Klieger, & Horowitz, 2007; Keane & Pyly-
shyn, 2006) have showed that participants perform
better if objects reappear at their last known positions
rather than positions based on their last known
direction. However, participants process the directions
of objects and report the last known directions for
targets more accurately than for distractors (Horowitz
& Cohen, 2010). When there are fewer targets,
participants extrapolate the motion of tracked objects
(Fencsik et al., 2007). If there is a smaller capacity for
using directional information, participants may use
directional cues in a flexible manner. Atsma, Koning,
and van Lier (2012) showed that in MOT participants
are more sensitive to probes presented in the direction
of movement, but they did not anticipate the bouncing
of objects unless the attentional load was low. Recent
studies (Huff & Papenmeier, 2013; St.Clair, Huff, &
Seiffert, 2010) confirmed the importance of directional
information in MOT using objects with dynamic
textures; the performance decreased when the texture
motion did not correspond to the direction of objects.
Additionally, participants may preferentially use di-
rectional cues as a heuristic to track objects for which
less accurate information is available (i.e., they are
further away from the gaze point or near other objects).

It is possible that eye-movement strategies are more
effective when derived using object positions from some
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earlier moment. When participants are asked to report
the last position of the tracked objects, both motion
extrapolation (Iordanescu et al., 2009) and a perceptual
lag have been reported (Howard, Masom, & Hol-
combe, 2011). More sophisticated models may account
for perceptual lags caused by the integration of
temporal information and some level of motion
extrapolation.

Conclusion

Contrary to other tasks (free viewing, recognition,
visual search), participants often fail to recognize the
repetition of the trials in MOT. This phenomenon
allows us to estimate the natural intra-individual and
interindividual variability of eye movements made
during this task. Many studies have shown that people
can perform the task without using eye movements;
here, I show that when eye movements are allowed,
they are characteristic of a trial. The intra-individual
variability provides an important upper bound when
evaluating any model that describes eye-movement
strategies in an MOT task. I compared the adherence of
the observed data to several simple models and found
the highest adherence in anticrowding strategy closely
followed by target-centroid and object-centroid strate-
gies (these strategies accounted for 48.8% to 54.3% of
eye-movement variability, when compared to the
empirical baseline and intra-individual variability).
Predictions based on other peoples’ eye movements
(DSST condition) would explain 68.6% of the variance.
I conclude that improvement is needed and more
sophisticated models are necessary to describe the eye
movements used in MOT. Furthermore, intra-individ-
ual variability should be used as a benchmark,
whenever possible, when evaluating models for visual
tasks.

Keywords: eye movements, attention, spatial vision,
active vision, multiple object tracking
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