
Where to look next? Eye movements reduce
local uncertainty

The Smith–Kettlewell Eye Research Institute,
San Francisco, CA, USALaura Walker Renninger

The Smith–Kettlewell Eye Research Institute,
San Francisco, CA, USAPreeti Verghese

The Smith–Kettlewell Eye Research Institute,
San Francisco, CA, USAJames Coughlan

How do we decide where to look next? During natural, active vision, wemove our eyes to gather task-relevant information from
the visual scene. Information theory provides an elegant framework for investigating how visual stimulus information combines
with prior knowledge and task goals to plan an eye movement. We measured eye movements as observers performed a
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placement reveals that observers may instead be using a local rule: fixate only themost informative locations, that is, reduce
local uncertainty.
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Introduction

Vision is more than a passive sense that is processed
through a bottom–up hierarchy. We move our eyes, often
purposefully, to actively gather the sensory information we
need to complete a task. Our internal goals influence our
eye-movement behavior, attention, and, ultimately, what
we perceive and remember. How do we decide where to
look?

The final landing point of a saccade is biased by
mechanical and physiological constraints, but more
important, the properties of the stimulus play a strong
role in observed fixation locations. For example, saccades
to a simple shape or object often land near the centroid of
that object (Melcher & Kowler, 1999; Vishwanath &
Kowler, 2003). When viewing natural images, observers
tend to fixate regions with higher local contrast, such as
regions near object borders or edges (Reinagel & Zador,
1999).

Due to the role of stimulus properties, researchers have
approached the question of eye-movement planning by
asking Bwhat properties in the visual image draw
fixations?[ A popular hypothesis is that we look at salient
points. Saliency is defined by visual features that stand out
or are surprising because they have different brightness,

color, orientation, or motion than the surrounding features
(Itti & Baldi, 2005; Itti & Koch, 2000). This hypothesis
makes sense in terms of survival (we want to quickly
locate the ripe fruit in the tree, or the tiger that moves
suddenly in our periphery), in passive viewing situations
such as watching a television commercial, or, perhaps,
when planning the first saccade to a complex scene or
object. However, because it is purely stimulus defined,
saliency has limited applicability to how we actively use
eye movements in daily life to recognize certain objects
by their shape, parts, or feature configuration, to search for
something, or to reach for an item.

The active, task-dependent nature of observed fixation
locations was cleverly demonstrated by Yarbus (1967),
who had observers study a painting with different
questions in mind. In recent years, advancements in eye-
tracking technology have allowed us to study eye move-
ments as observers perform real-world tasks like making a
sandwich or fixing a cup of tea (Hayhoe & Ballard, 2005;
Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Land,
Mennie, & Rusted, 1999). In these studies, eye move-
ments provide Bjust-in-time[ information relevant to the
motor task about to be executed. These studies lend
support to our intuition that eye movements are made to
collect task-relevant information from the visual scene.
How might we formalize this idea?
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Information-theoretic approaches

Information theory provides a convenient framework in
which we may formalize our intuitions and observations
of eye-movement behavior. For example, both behavioral
and physiological studies suggest that once a saccade has
been made to a location, there is an active inhibition of
return (IOR) signal that prevents revisiting that location
again for a period of time (Dorris, Klein, Everling, &
Munoz, 2002; Posner & Cohen, 1984). Within an
information framework, the rationale for IOR becomes
obviousVthe fovea is not likely to return to a location
once the information there has already been gathered.
During sandwich making (Hayhoe et al., 2003) and
object search (Rao, Zelinsky, Hayhoe, & Ballard, 2002),
observers may land at average positions between potential
target objects before moving to the final desired target.
This average positioning or hedging provides more
information about potential targets before the final eye-
movement decision is made.

The tendency to saccade to regions of high local contrast
(Reinagel & Zador, 1999) may also have an information-
theory explanation. As Raj, Geisler, Frazor, and Bovik
(2005) demonstrated, taking samples (fixations) that
minimize contrast entropy provides the best information
for the image reconstruction of natural scenes. To date, no
direct comparison of human eye movements and entropy
minimization in natural scenes has been made.

Legge, Hooven, Klitz, Mansfield, and Tjan (2002) and
Legge, Klitz, and Tjan (1997) were among the first to use
information theory to predict human eye-movement
patterns in their ideal observer model for reading. Because
eye movements are a natural consequence of having a
foveated visual system, this architecture must figure
prominently in any eye-movement model. As a stand-in
for the falloff in resolution with eccentricity, Legge et al.
defined the perceptual spanVthe number of letters
available for processing during the current fixation. This
Bwindow[ was used to make predictions about what word
was being viewed and to plan the next saccade to a
location that would best disambiguate the current word
from other words in a well-defined vocabulary. Rather
than attempting to incorporate the vast vocabulary of an
individual, they shrewdly defined a lexicon of 542
common words. The model produced familiar reading
patterns such as skipping small words and backward
saccades; however, a fixation-by-fixation analysis was not
performed.

Some recent attempts have been made to directly com-
pare information-theory predictions against human eye-
movement data (Najemnik & Geisler, 2005; Renninger,
Coughlan, Verghese, & Malik, 2005). For example, how
do observers use information during visual search?
Najemnik and Geisler (2005) designed a simple yet clever
search experiment. First, they carefully measured the
visibility of a Gabor target in 1/f noise at various
eccentricities. Using these measurements, they imple-

mented a search model for the Gabor target in noise that
adopts one of three strategies: (1) move to random
locations, (2) move to locations that reduce global
uncertainty about target location, and (3) move only to
locations that are most likely to contain the target (reduce
local uncertainty). The second strategy will collect
information optimally, and the third is the maximum
a posteriori (MAP) strategy. The probability of target
presence is monitored at every location, and the target is
Bfound[ when probability at one location exceeds a
predetermined threshold. The authors demonstrate that
their optimal and MAP searchers locate the target with
roughly the same number of fixations as human observers.
Although the aggregate behavior of human fixations
qualitatively resembled their model fixations, the landing
of individual saccades during the task was not examined.
We have yet to unravel what decision strategies underlie
the choice of human fixation locations.

Our approach

In this article, we use information theory to probe the
underlying decision strategies that govern eye-movement
planning. We use a psychophysical experiment that con-
trols the observer’s task and the task-relevant visual
information, as we measure eye movements. Individual
fixations are compared against strategy predictions using a
signal detection theory approach. At first inspection,
human eye movements appear Boptimal[ (reduce global
uncertainty); however, our rigorous analysis of individual
fixation placement reveals that an approximate, local rule
may actually govern eye-movement decisions.

Methods

Psychophysical methods
Stimuli

Observers participated in a shape-learning and -matching
task. The shapes were novel and abstract silhouettes,
created by randomly rotating and superimposing four
randomly selected objects from the Snodgrass and
Vanderwart (1980) data set of common objects. The moti-
vation of this approach was to give the shape a mostly
Bnatural[ object-like boundary while still presenting an
unrecognizable shape. By using abstract shapes in iso-
lation, we avoid the influence of cognitive information on
eye-movement planning, such as object familiarity or
scene context, while still capturing edgesVa fundamental
feature of natural images. For each shape, a partner shape
was created by superimposing a fifth randomly selected
and rotated object from the Snodgrass data set. This action
may cause more than one new protrusion on the original
shape; however, only one single connected change was
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kept. Some hand selection of the stimuli was performed to
discard featureless or circular shapes. Our stimuli and
stimulus generation code are available on the first author’s
web site. Five hundred shape pairs were created for the
experiment. Stimuli were presented using Matlab with
PsychToolbox (Brainard, 1997) and were presented as
high-contrast white figures on a midgray background.

Design

We block the shape pairs into five levels of difficulty
depending on the degree of boundary change (Figure 1A).
We calculate the shape-pair difference as the change in
orientation entropy along the boundary using a Bfixation[
at the shape centroid (see Appendix). We have shown that
this shape difference quantity scales with human shape
discrimination performance (Renninger, Verghese, &
Coughlan, 2005a). We are currently working on a more
detailed analysis of this metric.

Trials were completed in blocks of 20. Within each
block, trial difficulty was balanced based on the amount of
change between shape pairs. By including a range from
easy to difficult trials in each block, subjects were
motivated to continue studying the shapes effectively. Each
trial contained a completely new shape pair; thus, no shape
was seen more than once.

Task

Observers were seated 80 cm from the display screen,
which subtended a visual angle of 22-. On each trial,
observers first fixated a marker on the left or right side of
the screen and pressed a button to begin. For the learning
phase, a shape was selected at random from the pair and
was displayed on the opposite side, centered at 10- from
fixation. Subjects were instructed to maintain fixation at the
marker. After 300 ms, fixation was extinguished and
observers were allowed to make eye movements to and
around the shape, which was displayed for 1,200 ms. Each
displayed shape was scaled to measure 12.5- along the
diagonal of its bounding rectangle.

The subject’s task is to Blearn[ the shape during this brief
presentation, and its large size ensures that eye movements
are required to do so. In the matching phase, the learned
shape and its highly similar partner were displayed together
at a new location. These test shapes subtended 4-.
Observers were allowed to study the shape pair until they
reached a decision about which member of the pair
matched the shape they learned (Figure 1B). Feedback
was given.

Subjects

Four female subjects (of whom, three were naBve)
participated in the experiment. Subjects ranged in age from
21 to 43 years. All had normal, uncorrected vision. A total

of 500 trials were completed over two to three recording
sessions. The experimental protocol was approved by the
California Pacific Medical Center Institutional Review
Board.

Eye-tracking methods

Observers’ eye movements were monitored during the
task with an SRI Dual Image Purkinje Eye Tracker,
sampling eye position at 1000 Hz. Viewing was binocular,
but only the right eye was tracked. Head position was
maintained with a bite bar. Calibration under these
conditions is very stable, with high precision and no drift.

The calibration procedure was twofold. First, observers
viewed a static cross that was made of 0.1- dots placed
centrally, T5- vertically, and T5 and T10- horizontally.

Figure 1. Stimuli and task. (A) Examples of shape pairs used in
the psychophysical task. The size of the change increases from
left to right. (B) Subjects fixate a marker and maintain fixation as a
novel object silhouette appears in the periphery for 300 ms. When
the marker is extinguished, the subject has 1,200 ms to study the
shape with eye movements. Immediately after the study phase,
the shape pair is displayed and the subject must select which one
was just presented.
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Observers were instructed to view each dot in turn as the
tracker was manually adjusted to return a linear readout in
response to eye position. Next, observers fixated a dynamic
0.25- dot that blinked on for 1,500 ms and swept out a 5 � 5
calibration grid that covered the stimulus space in steps of
5- horizontally and 3.5- vertically. This grid was used to
apply a piecewise perspective transformation to the raw eye
position data, correcting any nonlinearity that may occur
near the edges of the display.

The initiation of a saccade was marked if eye velocity
exceeded 80-/s. The initiation of a fixation was marked if
eye velocity dropped below 10-/s. Eye velocity was
computed as the rate of displacement within a symmetric
10-ms window centered on the sample of interest. If two
sequential fixations were found within 0.5-, they were
labeled as a single fixation.

Modeling information

The observers’ implicit task is to build an accurate
representation of each shape as it is studied with eye
movements so that it can be discriminated from a highly
similar shape during the matching phase. Given our
knowledge of V1 processing, we assume that the informa-
tion needed for this task is the edge orientations derived
from the shape contour. It is possible that a pixel-based
representation would work as well given our task, but it is
more computationally intensive. BHigher level[ represen-
tations such as parts do not appear to play a role for this task
(Renninger, Verghese, & Coughlan, 2006).

We constructed a straightforward model to describe how
orientation information is gathered by the human visual
system. With each fixation, the observer takes a foveated
measurement of the orientations in the stimulus. The ability
to resolve orientations degrades as a function of eccen-
tricity. We estimate the orientation information at a point
on the stimulus by constructing a pooling neighborhood
whose size depends on distance from the current fixation
point (Figure 2B). The pooling extent was determined
using parameters from the vernier acuity literature (Levi,
Klein, & Aitsebaomo, 1985; see Appendix) and has been
confirmed by the authors in a separate, unpublished study.
We chose these parameters because vernier acuity is
thought to be a consequence of orientation-selective filters
in primary visual cortex. For simplicity, we consider filters
selective to eight discrete orientations. Within a pooling
neighborhood, we count the number of occurrences of
different veridical edge orientations and create a histogram
(or probability distribution after normalization) of the
different orientations at that location (Figure 2C). Each
histogram is intended to be analogous to the initial
distribution of neural responses to the stimulus across a
hypercolumn of orientation-selective cells in visual cortex
(Lee & Yu, 2000).

With each successive fixation, we update what is known
about the stimulus at each point (posterior distribution) by

multiplying the new measurement distribution (likelihood)
at that point with the prior distribution, which is flat before
the very first fixation is made (Figure 2A). An adjustment
of response distributions such as this may be achieved in
the visual system through feedback connections (Hamker,
2003). By definition, information is the entropy of a
probability distribution:

entropy ¼ j~ pðxÞlogpðxÞ: ð1Þ

When there are many different orientations in a neighbor-
hood (e.g., a bumpy contour in the periphery), all
orientations are equally likely and the distribution will be
flat (high entropy). Alternatively, straight edges will
produce energy at a single orientation or very peaked
distributions (low entropy). As the evidence of orientations
accumulates with successive fixations, we can represent the
uncertainty of shape knowledge at any point in time by
computing a resolution-dependent entropy (RDE) map
(Figure 2D). We have shown in previous work that the
residual uncertainty (entropy) remaining after a series of
fixations correlates with observer performance in this task,
validating our modeling approach (Renninger, Verghese,
& Coughlan, 2005b). A more rigorous treatment of the
model can be found in the Appendix.

In the next section, we first look at the general pattern of
human eye movements in our task before applying the
model to probe the nature of decision strategies that
underlie individual fixations.

Experimental results

Task performance and eye movements

All four observers performed above chance but not
perfectly in the shape-matching phase of the experiment.
Percentage correct ranged from 75% to 78%. This perform-
ance level suggests that the task was achievable yet difficult
enough to encourage efficient information gathering during
the learning phase.

Mean amplitudes of object-exploring saccades ranged
from 2.38- to 4.44- and rarely exceeded 10-. Mean dwell
times ranged from 175 to 403 ms (Figures 3A and 3B).
These measured eye-movement behaviors are similar to
what has been found for viewing of naturalistic stimuli
(Bahill, Adler, & Stark, 1975) and in search tasks
(Najemnik & Geisler, 2005). There was a strong negative
correlation between average saccade amplitudes and dwell
time across observers (r = j.90). That is, observers who
made large saccades tended to fixate for shorter periods
and vice versa. Subjects typically made three to five
fixations around the object in the viewing time allowed.
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Fixated locations were found to be spatially distributed
in a Bdonut[ shape for three of four subjects (Figure 3C).
These distributions were assembled by assuming that the
preview fixation was always to the right and by flipping
fixation coordinates for left-preview trials. The fixations
that are highlighted in red are the first fixations to the
object. First fixations do not have the same donut
distribution of the other object-exploring fixations and
are biased in the preview direction. This clustering of the
first fixation for very different shapes may indicate that it
may simply be a localizing saccade that is mostly

independent of detailed shape information. The absolute
scale of the donut distribution might suggest that observ-
ers are making fixations within object boundaries. Further
analysis revealed that although fixations may cluster near
boundaries on average, they often fall outside of the
boundary; 8.4% to 27.6% of fixations landed outside
object boundaries depending on observer. Next, we
evaluate different eye-movement decision strategies by
examining the placement of individual fixation locations.

Strategy analysis

Do observers maximize information?

Using the information-theoretic model, we can probe
how information is used to plan eye movements to the
stimulus. If the goal of eye movements is to gather task-
relevant information, then the best strategy is obvious:
fixate locations that maximize the total information gained
about the contour orientations. We can compute this
prediction by evaluating all possible next fixation locations
and selecting the one that yields the greatest gain in total

Figure 3. Human eye movements. (A) Human saccade ampli-
tudes and (B) fixation durations are similar to what has been
found in previous work. (C) Fixations tend toward the edges of the
shapes for three of four observers, forming a donut-shaped
distribution. Red points indicate first fixations to the shape.

Figure 2. Probabilistic model of shape contour information.
(A) Before the shape is investigated with eye movements, there is
no prior knowledge about the orientation at each location in the
stimulus space. The resulting probability distributions over orien-
tation are flat at each location, and uncertainty (entropy) is high
everywhere. (B) A sample fixation (+) places smaller pooling
neighborhoods near the top of the shape and larger neighbor-
hoods near the bottom. Orientation distributions are computed at a
location (red dot), using the appropriate pooling area (dashed
circle). (C) The measurement distribution is multiplied with the
prior distribution at that location to produce updated knowledge
(posterior distribution). Updated knowledge becomes prior knowl-
edge for the next fixation. The eyes move and another measure-
ment is taken. (D) Schematic. The uncertainty (or information) at
any point in space and time is computed from the updated
knowledge and can be represented with an RDE map. For the
first fixation, straight lines within a pooling neighborhood result in
lower entropy (blue) at a location, whereas curved or bumpy lines
within a neighborhood result in higher entropy (red). See
Appendix.
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information (i.e., greatest reduction in total uncertainty).
We consider a grid of possible fixations, spaced 0.25- apart,
and compute a strategy prediction map. Figure 4A
illustrates a sequence of fixations based on this Bglobal[
strategy prediction. Note that this prediction is for placing
the next fixation. Predicting the fixation sequence that
maximized information gain is more computationally
intensive, although there is some evidence that humans
may indeed plan more than one fixation at a time.

When we consider the aggregate behavior of fixation
predictions generated by the global strategy, we see that the
distributions of saccade amplitude and fixation location are
qualitatively similar to those measured for our subjects
(compare Figure 4B with Figure 3). In contrast, the
distributions generated by a random strategy that predicts
fixations anywhere on the stimulus are quite different from
the human pattern (Figure 4C).

Data exclusion

Recall that, on each trial, the observer first fixates the
marker, followed by a second fixation on or near the shape.
The few trials in which this pattern is violated are not
included in the analysis. For the remaining trials, we wish to
analyze only Bobject-exploring[ fixations, which fall within
the donut-shaped distribution and may be predicted by our
information strategy. We do so by excluding the preview
and localizing fixations, which will not be predicted by

information strategies. We also exclude fixations with
dwell times that are less than 50 ms, as they do not fall
within the primary mode of the population distribution (see
Figure 3B) and may be stutters or pauses along the way to
the intended fixation location.

Fixation error

To quantitatively assess each strategy, we first compute
the Bfixation error[ as defined here. We compute the first
five strategy-predicted locations for each shape. We chose
the first five because human observers typically made three
to five fixations per shape. Every human fixation to that
same shape is then mapped to the closest strategy fixation,
and the distance errors are accumulated. The mean of these
samples is the fixation error and is taken as one measure of
how well strategy-predicted locations align with human
fixations. The significance of the alignment is assessed by
bootstrapping (1,000 iterations) to get 95% confidence
intervals of the fixation error. On average, human fixations
are closer to the global strategy than to random fixations
(Figure 5).

Note that this error measure ignores the sequence in
which fixations are made. Nonetheless, it is useful for
assessing the extent to which observers and strategies select
the same Binterest points[ regardless of their strength (and,
thus, order in the sequence). It also affords us a rough
measure of how similar the fixation distributions are

Figure 4. Global uncertainty and random strategy predictions. (A) Predicted fixations for the global strategy are superimposed on a shape
stimulus (left) and the strategy prediction map (scaled from 0 to 1; blue to red). After each fixation, knowledge of the stimulus is updated
and a new prediction is computed. The global strategy is to move to locations that maximize the total information gained (i.e., reduce
uncertainty about all edge orientations) with each fixation. (B) The global strategy predicts saccade amplitude and fixation distributions
similar to those measured for our subjects, whereas a random strategy does not (C).

Journal of Vision (2007) 7(3):6, 1–17 Renninger, Verghese, & Coughlan 6

Downloaded from jov.arvojournals.org on 04/24/2024



between humans and different strategies in their compact-
ness, shape, and so forth.

Receiver operating characteristic (ROC)

Using the spatial prediction map, we can conduct a
rigorous signal detection theory analysis and investigate
how well the global strategy predicts individual fixations.
Each new fixation ( f ) is overlaid on the current strategy
map, which is updated using the previous series of
fixations (1, I, f j 1). The map is rescaled from 0 to 1,
and the prediction value is taken as the maximum value
that falls within 1- of the human fixation (Figure 6A),
following the approach outlined by Tatler, Baddeley, and

Gilchrist (2005). A criterion window of 1- allows some
wiggle room for natural fixation error and imprecision in
our sampling of the global prediction (we interpolate a
grid with 0.25- spaced samples). Because it is unlikely
that information for eye-movement planning is processed
in less than 100 ms (Araujo, Kowler, & Pavel, 2001;
Caspi, Beutter, & Eckstein, 2004), the prediction map is
only updated by a fixation if its dwell time exceeds this
value.

Next, we compute ROC curves and measure the area
under the curve (AUC) to assess the power of the global
strategy prediction. We compute Bhits[ as the probability
that the prediction value exceeds threshold at fixated
locations. We compute Bfalse alarms[ as the probability
that the prediction value exceeds threshold at locations not
fixated by the observer. We determine Bnot-fixated[
locations by simply evaluating locations predicted by the
random strategy. Hits and false alarms are plotted with
changing threshold, sweeping out the ROC curve. If the
global prediction is no better than random at predicting
human fixations, the ROC curve should lie along the
positive diagonal (AUC = 0.5). If the global strategy is a
good predictor of human fixations, it will tend toward the
upper left-hand corner of the plot (AUC = 1.0). To assess
the significance of the AUC, we resampled the hits and
false alarms in our ROC analysis with replacement to
produce bootstrapped estimates. A prediction is consid-
ered significantly better than chance if the 95% confidence
interval for the AUC does not include 0.5. Figure 6B
shows that for all of our observers, the global model is
significantly better than chance at predicting the next
fixation.

From the fixation error and ROC results, we might be
tempted to conclude that human observers use a global

Figure 6. Comparison of human fixation sequence to the global strategy. (A) One observer’s fixation sequence superimposed on a shape
(left) and on the corresponding global strategy prediction, which is updated after each fixation. Maps are scaled from 0 to 1 (blue to red).
(B) ROC curves for all four observers show that the global strategy is significantly better than the random strategy at predicting fixation
locations. The area under the ROC curve is noted on each plot.

Figure 5. Fixation error. The fixation error between human
fixations and the global strategy predictions is significantly smaller
than the fixation error of the random strategy.
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information maximization (uncertainty reduction) strategy
when planning eye movements to study the novel shape
silhouettes in this task. Be aware, however, that these
results are generated as a comparison to a uniform random
model. The simple fact that the global model produces a
donut-shaped distribution of fixations may be enough to
align it with human fixation patterns. A much more
stringent test is one that compares the performance of a
strategy against a Bsmarter[ random strategy that knows
shape information is near the edges in this task.

The smart random strategy

One way to factor out the bias in the human fixation
pattern is to adopt a baseline comparison that has the same

bias (Tatler et al., 2005). To achieve this, we analyze each
observer’s fixations on a given trial against his or her own
fixations drawn randomly from other trials. The now
Bsmarter[ random strategy again provides a measure of
what is not fixated, from which we generate false alarms
for the ROC analysis. Using this much stricter test, how
well does the global strategy predict human fixations?
Figure 7 demonstrates that the fixation error is lower for
the smart random strategy compared with the uniform
random strategy, but the global strategy still has a
significantly smaller error. When the smart random
strategy serves as a baseline comparison, ROC curves
shift toward the diagonal but the AUC is still signifi-
cantly greater than 0.5. The magnitude of the AUC
values demonstrate that, although far from perfect, the
global strategy has some power to predict human eye
movements.

We refer to the global strategy as the Bomniscient[
strategy because the benefit of all possible fixations is fully
known before a decision is made about the best next
fixation. We do this by simulating a fixation to a location
and computing the information gained. In reality, the visual
system cannot possibly compute the global strategy in this
manner. More likely, it uses estimates (e.g., heuristics or
learned priors) to determine the benefit of each possible
next fixation. Such approaches have been taken in the
literature (Geman & Jedynak, 1996; Raj et al., 2005).
When estimates are used, the global strategy is to
maximize the expected information rather than the actual
information. It is unclear how the visual system would do
this without complex computation. Is there a simpler,
more efficient strategy that produces similar fixation
behavior?

Other strategies

In this section, we consider two biologically plausible
strategies for making eye-movement decisions. We eval-
uate each strategy against the smart random baseline.

Saliency

Given that the shapes in the psychophysical task are
novel, top–down influences such as familiarity should be
minimized and observers may simply look at salient points
on the shape. Locations become salient as their properties
(contrast, orientation, motion, etc.) differ from the sur-
rounding locations. In our stimuli, salient locations are
those that have an orientation that differs from its surround,
such as corners or sharp points. We produced saliency
prediction maps for our stimuli (Figure 8A) using the
model developed by Itti and Koch (2000), which is
available on the web. The version of the saliency model

Figure 7. Global strategy versus smart random strategy.
(A) Fixation errors of the random, global, and smart random
strategies for four subjects. (B) As indicated by the arrows, AUC
values are significantly lowered when a smart random model is
taken as the baseline comparison. These new values (displayed
on each plot) demonstrate that the global strategy still shows
significant predictive power.
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used here does not take eccentricity factors into account,
although newer implementations do. This limitation will
be addressed in the discussion.

Local uncertainty

Rather than maximizing information gain globally, the
visual system may use a greedy strategy in which only the
most informative points, or points of maximum entropy, are
fixated. To better understand this difference, imagine two
nearby locations that have similar prediction values. The
global strategy might be to fixate between them to
maximize information about both locations, whereas the
local uncertainty strategy would fixate the one with slightly
higher uncertainty (more information). To model this, we
used the RDE map from Figure 2D directly as a
prediction map and the strategy is to fixate the Bhot spots[
(Figure 8B). This strategy is analogous to the MAP
prediction described by Najemnik and Geisler (2005).

Analysis

Both the saliency and local uncertainty strategies
produce a donut-shaped distribution, but neither strategy
shows a distribution of saccade amplitudes exactly like the
observers (Figure 9). As before, we compute the fixation
error and ROC curves for these two strategies. In the case
of the saliency strategy, we include a 1- mask that inhibits
saliency signals at previously fixated locations. We do this
to mimic the dynamic changes in the saliency map due to
IOR, as in Itti and Koch’s original model. This will
presumably improve the prediction of the saliency strategy
by reducing the number of salient locations that the

random strategy may predict. For the local uncertainty
strategy, the RDE map is updated from the history of
human fixations. For both strategies, the prediction strength
for the next fixation is evaluated using the maximum value
of the strategy prediction map within 1- of the fixation.

Fixation error

Figure 10A plots the fixation error for all strategies. The
dashed line represents the error level for the smart random
strategy. Neither the saliency nor the local uncertainty

Figure 8. Prediction sequences for saliency and local uncertainty strategies. (A) Saliency: Prediction sequence is displayed on the shape
(left). The strategy map for each prediction is shown on the right. Previously predicted locations are blanked out to simulate IOR. (B) Local
uncertainty: The prediction map is updated based on the history of human fixations. Maps are scaled 0 to 1 (blue to red).

Figure 9. Predicted fixation behavior for saliency and local
uncertainty strategies. Saccade amplitude and fixation distribu-
tions for the (A) saliency and (B) local uncertainty strategies.
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strategy performs equal to or better than the global
strategy according to this measure. In fact, the strategies
are sometimes worse than random! Recall that this metric
ignores the sequence in which fixations are made and
simply computes the distance between observed and
predicted fixation locations on a given trial. Both the
saliency and local uncertainty strategies have a less
compact spatial distribution than our observers, which
may explain the larger errors with this metric.

Receiver operating characteristic

Figure 10B plots the ROC curves for the global,
saliency, and local uncertainty strategies, as compared
with the smart random strategy. The AUC is significantly

greater than 0.5 for all curves across all observers,
although it is obvious that Subject 4 is not well predicted
by any of the strategies. This is not surprising given that
her spatial fixation distribution is very different from the
other three subjects; it is highly compact rather than donut
shaped.

In Figure 10B, the AUC values are listed in a
decreasing-magnitude order and are color coded according
to strategy. Brackets indicate a significant difference
between values, as determined by bootstrapped 95%
confidence intervals. Looking at the data for our first
three subjects, we get a very interesting result! Despite the
differences in saccade amplitude and fixation distributions,
the local uncertainty strategy is at least as good as the
global strategy at predicting where observers will look
next. The saliency strategy is again a poor predictor.
Unlike the fixation error analysis, recall that the ROC
analysis does take the sequence of previous human
fixations into account and evaluates the ability of each
strategy to predict the next fixation.

This curious result implies that local uncertainty is
providing a valid cue to the eye-movement planning
decision. Notice in Figure 9B that the predicted spatial
fixation distribution for this strategy is quite diffuse. The
discrepancy between fixation error and the ROC finding
could be explained if observers consistently undershoot
the maximum of the local uncertainty prediction but still
land within a hot spot. It is well known that humans make
fixations toward the centroids of small shapes (Melcher &
Kowler, 1999). What if observers are combining the local
uncertainty strategy with a simple centroid prior when
planning fixations?

Local uncertainty + centroid

To test this idea, we will assume that observed
fixation locations f are biased toward the centroid by a
weight w:

fx
fy

� �
¼ w

Cx

Cy

� �
þ ð1jwÞ f̂x

f̂y

" #
; ð2Þ

where C is the centroid and fˆ is the strategy-defined
prediction. Figure 11A plots the predicted saccade
amplitude and fixation distributions for the local uncer-
tainty strategy with a centroid weighting of 0.25. The
mean saccade amplitude is now similar to subject data.
The occurrence of many shorter saccades (and resulting
bimodal distribution, Figures 9B and 11A) may be an
artifact of our local uncertainty computation (see the
General discussion: Local section). As
expected, the spatial distribution of predicted fixations
has a more compact donut shape and looks strikingly
similar to the human pattern. This improved distribution is
reflected in the decrease in fixation error (Figure 11B).

Figure 10. Analysis of optimal, saliency, and local uncertainty
strategies. (A) Fixation errors of all strategies, across four
observers. (B) ROC curves for the optimal, saliency, and local
uncertainty strategies, as compared with the smart random
strategy. Brackets indicate significant increases between AUC
values.
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Given observed fixation locations and different values of
w, we can calculate the observer’s intended fixation and
superimpose it on our local uncertainty strategy map.
Using the prediction values from these maps, we again
compute ROC curves. Figure 12 plots the AUC as a
function of centroid weighting for each subject. The
straight lines indicate the baseline AUC for the global
and local uncertainty strategies (i.e., without centroid
weighting). The 95% confidence intervals attained with
bootstrapping allow us to determine which points are
significant. For all subjects, the local uncertainty strategy
with centroid weighting provides the best prediction of
human fixation locations.

General discussion

Much research has gone into understanding the stimulus
properties and decision strategies that might underlie
human fixation patterns. This article uses an active
information-gathering task to mimic situations that are
often encountered in natural vision. Here, we discuss
several aspects of our approach and findings.

Observer variability

On a given trial, two observers may exhibit very different
scan paths. Subject 3 repeated the entire experiment, and
her second-pass scan paths were not necessarily similar to
her first. Given longer display durations, it is possible that
the chosen fixation locations between observers would
eventually overlap. This would suggest that there are many
fixation sequences that are good enough for collecting the
task-relevant information. Using an ROC analysis, there-

fore, provides much better insight into how well different
strategies align with human fixation behavior. Some of the
variability among subjects may also be attributed to

Figure 11. Effect of centroid bias on local uncertainty predictions. (A) Predicted saccade amplitude and fixation distributions for the local
uncertainty strategy with a centroid weighting of 0.25. (B) Summary of fixation errors for all strategies.

Figure 12. ROC analysis of centroid bias effect. Adding a centroid
bias to the local uncertainty prediction results in a significant
improvement over other strategies (black symbols). For compar-
ison, the green and blue lines represent the local and global
uncertainty strategy predictions. The symbol color indicates
significant differences based on 95% confidence intervals.
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individual differences in orientation discrimination abil-
ities. Subject 4 had an extremely compact distribution of
fixations yet did quite well in the task. It seems that she was
able to use more peripheral vision to gather the same
quality of information as the other subjects. We chose to
use vernier acuity parameters to model orientation discrim-
ination for all of our subjects. Aside from possible
individual differences, these parameters only provide an
approximation for how the visual system is able to
characterize orientation along the bounding contour of a
shape. Inhibition from crowding and facilitation due to
contour continuation are likely factors that will affect how
well contour orientations can be discriminated.

ROC analysis

Despite our choice of approximating parameters, we are
able to do a reasonably good job of predicting human
fixation locations within an information-theory framework.
By using ROC analyses, we get a quantitative and mean-
ingful measure of how well hypothesized strategies
predict human fixation locations. If we assume a uniform
random baseline, all strategies do an excellent job of pre-
dicting fixations because they all gravitate toward object
edgesVwhere the stimulus information is and where
humans look. If we instead use a Bsmart[ random strategy
as our baseline measure to factor out this bias, we can
better gauge the power of different strategies to predict
individual fixations within the overall fixation distribution.
This stringent test allows us to compare the microstructure
of different strategies and to better discriminate between
them.

Saliency

The idea that we look at salient locations has received
much attention in the literature. In our ROC analysis, we
find that saliency has the least power to predict human
fixation locations. We were not particularly surprised by
this finding. Our task requires that observers actively gather
orientation information along the entire contour of the
object. All contour information is important to the task, not
just the salient information (e.g., corners). In this active
setting, information-based models of eye movements may
do a better job. It should be noted, however, that we
implemented the classic saliency model of Itti and Koch
(2000). A saliency model that factors in eccentricity
effects may perform differently. The implementation of
Peters, Iyer, Itti, and Koch (2005) attenuates orientation
and contrast signals as a function of eccentricity before
producing a salience map. This leads to shorter saccade
amplitude predictions because distant points become less
salient. The underlying topology of salience is not
affected, however; thus, we speculate that adding eccen-
tricity factors may alter the sequence of predicted fixations

without altering their location. Our measure of fixation
error is likely accurate then, and the saliency strategy
demonstrates larger errors than the global information
strategy. Because eccentric salient points are attenuated,
the random strategy in the ROC analysis would hit fewer
predicted locations, reducing false alarms. Human fixa-
tions would also have less chance of landing on salient
locations, reducing hits. Thus, it is unclear how the AUC
would be affected by adding eccentricity factors.

Even without eccentricity factors, our analysis does
show some weak predictive power for the saliency
strategy, but the results may be somewhat confounded.
In our stimuli, local uncertainty and saliency predictions
often overlap, especially early in the fixation sequence.
This correlation is likely present in all natural stimuli.
Stimuli that cleanly isolate local uncertainty and saliency
effects would be needed to determine if the visual
system makes use of only one strategy or if it uses both
strategies.

Maximize information (global)

Consistent with the findings in visual search (Najemnik
& Geisler, 2005), we find that observer fixation placement
is well described by an optimal strategy that seeks to
maximize information gain across the stimulus. The
computation of this prediction is intensive and requires
an exhaustive evaluation of all possible fixations before a
decision is made. We compute the prediction by actually
simulating each possible next fixation and computing the
information gained. The visual system might achieve a
similar computation by using heuristics or estimates of
orientation information (Raj et al., 2005). This expected
information gain must still be computed globally across
the visual field.

Local uncertainty

A simpler strategy would be to just Blook at,[ that is,
foveate the region about which we are most uncertain (i.e.,
the most locally informative point). Our ROC analysis
revealed that despite its more diffuse predicted fixation
distribution, the local uncertainty strategy does as good a
job of predicting fixation locations as the global strategy.
This suggests that the local uncertainty signal is powerful.
However, our prediction map may not be correct in detail.
Our inference of orientation at a point, discretization into
eight bins, and use of vernier parameters are all approx-
imations that may introduce error into our estimation of
local uncertainty. Isolated maxima will predict a fixation
regardless of neighboring activity. This may be the under-
lying cause of the bimodal distribution (Figure 9B) of
saccade length for this strategyVoften shorter saccades
are made to isolated maxima (see Figure 8B, third panel).
The visual system, perhaps through lateral interactions,
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may smooth these spurious signals. Also, large areas of
activity may be sharpened through nonlinear competition.
Such manipulations to the prediction map are easily
explored, but it is probably better to do so after the
fundamental parameters for contour processing as a
function of eccentricity have been better quantified.

Saccade length

Human saccade amplitudes have been reported to follow a
characteristic distribution with a mode around 3- and
amplitudes rarely exceeding 15- (Bahill et al., 1975). Data
from our subjects are consistent with this report; however,
the three aforementioned strategies predict a mode consid-
erably larger than 3-. This discrepancy could be due to an
incorrect estimation of the visibility of contours in the
periphery (i.e., uncertainty in the periphery is even greater,
drawing predictions further out), or it may be explained by
factors that we have not considered. To our knowledge,
there are no mechanical factors that restrict the length of a
saccade, but it is possible that energy constraints favor
shorter saccades or that time pressure leads observers to
make shorter saccades. When a centroid bias is added to
the local uncertainty strategy, the mode of saccade
amplitudes falls in closer alignment with human data, and
the prediction of fixation placement is greatly improved.

Biological plausibility

Lee and Yu (2000) proposed that a local uncertainty or
information signal may underlie eye-movement planning
and could be encoded as early as orientation hyper-
columns in visual area V1. Each hypercolumn represents
activity over different orientations for a given location in
the visual field, analogous to our histogram representation.
Lateral connections, feedback connections, or both could
serve to reach a local consensus about orientation content,
smoothing the map and reducing the spurious signals we
see in our prediction maps (Hamker, 2003; Lee &
Mumford, 2003). This early uncertainty map would then
need to be combined with a stimulus-centered representa-
tion that incorporates knowledge gained from previous
fixations, possibly mediated by mechanisms that pool
orientation at a single scale (Olzak & Thomas, 1992). This
speculative architecture for eye-movement planning reso-
nates well with the theories of redundancy reduction that
have been proposed as a guiding principle for the
evolution of our visual system.

Framework-driven considerations

Regardless of how or where in the brain eye-movement
decisions are made, the information-theory framework

provides an invaluable tool for outlining a principled
approach to research on this topic. In the work presented
here, we have made several assumptions out of necessity,
and these assumptions must be challenged! For example,
we have assumed that shape knowledge is updated before
the next fixation is planned. Several studies suggest that
rather than being programmed one at a time, a sequence of
fixations may be planned at once (Caspi et al., 2004;
McPeek, Skavenski, & Nakayama, 2000). Is there a fixed
integration time for including new information into the
eye-movement plan, or does it depend on how much
information is available during a given fixation? Is the
integration time altered under different stimulus or task
conditions?

When updating information, we assume that orienta-
tions along the contour are independent, although real-
world objects are constrained to have a closed, piecewise
smooth contour. Observers may use this prior world
knowledge to make inferences about contour orientation.

Finally, we have assumed a noiseless system, whereas
work in neurophysiology suggests that noise may affect
which of two competing locations or decisions will be
selected (Carpenter, 1988; Shadlen & Newsome, 2001).
Internal noise may also degrade the information signal
over time, whereas we have assumed perfect memory.
Studying subject self-variability in a repeated eye-move-
ment decision task may shed some light on the nature of
decision noise.

Our results suggest that a local uncertainty rule may
dominate eye-movement decisions. In our experiment, the
fixation distribution data suggest that two tasks were being
performed: (1) localizing the shape and then (2) learning
the boundary. We focused our analysis on the second task.
Questions still remain as to whether different strategies may
be used in different tasks or if there is a switching between
strategies during a single task. We hypothesize that the
decision strategy remains fixed but that the task-relevant
information changes. Defining and quantifying informa-
tion for a variety of tasks remains one of the great
challenges of vision research.

Summary and conclusion

Information theory provides an elegant framework for
conceptualizing and modeling human eye-movement
behavior. To model orientation information in our task,
we selected vernier acuity parameters from the literature;
however, further research is needed to characterize how
orientation information along a continuous contour is
processed by the visual system. Using signal detection
theory, we rigorously compared the predictions of
several decision strategies for predicting fixation loca-
tions: maximize total information (global), saliency, and
local uncertainty. Saliency was a poor predictor of
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fixation placement in our active, information-seeking
task. The global strategy provided a good fit to the
observer data. It is not clear whether the visual system
could compute this decision without use of estimates or
heuristics. Local uncertainty also provided a good fit to
the data and could easily be computed as early as V1
orientation hypercolumns. Combining this decision with
a simple centroid weighting provided the best fit to
human fixations, suggesting that other factors may play a
role into making the final decision on where to move the
eyes. Further research is needed to determine if different
strategies are used under different conditions or whether
observers are able to use hybrid strategies.

Appendix A: Model details

Probabilistic model

Our psychophysical task entails learning the shape of a
novel silhouette. The brief display time makes the task
challenging because the visual information obtained from
one fixation is insufficient to determine the shape exactly,
given the reduced resolution of the periphery. In this
Appendix, we describe a probabilistic model for repre-
senting visual information about the stimulus and how this
representation is updated with information acquired from
new fixations.

We represent the stimulus shape as a collection of
edgelets or small straight-line segments that approximate
the continuous shape boundary. Each edgelet can assume
any one of eight possible orientations, which is a
discretization of all possible orientations from 0- to
180-. There are a total of n edgelet orientations along
the boundary, labeled xi, where i = 1, 2, I, n, and xi = 1,
2, I, 8 for each i. We set n to be equal to the number of
boundary or edge pixels. The edgelet orientations are
unknown to the observer and need to be inferred from
visual information.

We have defined this edgelet representation rather than a
pixel-based representation to reduce our computational
load. This simplification incorrectly assumes perfect
knowledge of edge locations in the stimulus, completely
ignoring positional uncertainty. However, positional uncer-
tainty is roughly 10-fold less than orientation uncertainty
across eccentricities (Levi et al. 1985; White, Levi, &
Aitsebaomo, 1992). Thus, ignoring positional uncertainty
is unlikely to affect the topology of our strategy prediction
maps.

The visual information obtained about the edgelets is
modeled using the responses of a bank of filters that
measure the frequency of each orientation in a local
region. The responses of a population of oriented filters
within a neighborhood of radius r(E) are represented as a

histogram over eight orientations. We choose r(E) to be
equal in size to a Bperceptive hypercolumn,[ as described
by Levi et al. (1985) for vernier acuity in the periphery.
Specifically, r(E) is the distance at which small flankers
begin to elevate thresholds for a vernier acuity
stimulus. It is thought that these flankers encroach on
the orientation-selective cells that are analyzing the
vernier stimulus and is, therefore, a rough measure of
orientation hypercolumns. As this is a perceptual
finding, Levi et al. coin it the perceptive hypercolumn.
Quantitatively,

rðEÞ ¼ sðEþ E2Þ;
s ¼ 0:1;
E2 ¼ 0:8;

ðA1Þ

where E2 is the eccentricity at which acuity drops to
half its value in the fovea and s is the slope. We further
interpret r(E) as an effective radius over which the
visual system spatially pools orientation information
(Figure A1). Unpublished data from our laboratory
support the Levi et al. parameters.

More precisely, let Ei(F) denote the eccentricity of
location i relative to fixation F. Thus, we write r(Ei(F))
for the radius of the histogram at edgelet i given fixation
F. The histogram is normalized by the total number of
edgelets within the radius so that all the histogram entries
sum to 1. For each edgelet i viewed from fixation F, we
denote the histogram by hi(F), where the boldface
indicates that it is a vector with eight components (see
Figure A1).

The histogram hi(F) provides a summary of the shape
boundary near edgelet i. If the boundary is perfectly
straight within the receptive field radius, then the histo-
gram will show the presence of only one orientation in the
entire local population, which uniquely determines all the
edgelet orientations in that population. Conversely, a
flatter, higher entropy histogram indicates that the local
shape is more complex.

We model the evidence that hi(F) provides about edgelet
orientation xi using a simple likelihood model: P(hi(F)|xi,
Ei(F)) = hi,xi(F)/Z, where hi,xi(F) is the xith component of
hi(F), that is, the fraction of edgelets within the pooling
neighborhood with orientation xi. Z is a normalization
constant. For an intuitive interpretation of the likelihood
function, notice that if hi(F) is 0 for some component xi =
z, then no edgelet in the local population has orientation z;
thus, the likelihood function P(hi(F)|xi, Ei(F)) equals 0 for
xi = z, which rules out the possibility that xi = z.
Conversely, the higher the value of P(hi(F)|xi, Ei(F)) for
any component value xi = z, the more likely that the true
value of xi is actually z.

A simple uniform prior is placed on the distribution of
orientations: P(xi) = 1/8, which means that all orientations
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are a priori equally likely. Using Bayes’ rule, we obtain
the posterior distribution

PðxijhiðFÞ;EiðFÞÞ ¼ hi;xiðFÞ=ZV; ðA2Þ

where ZV is a normalization constant.
Given the posterior distributions over all the edgelets, the

entropy map is defined as described in the next section.
Similarly, the posterior probability can be updated for
multiple fixations F1 and F2 as follows:

PðxijhiðF1Þ; hiðF2Þ;EiðF1Þ;EiðF2ÞÞ
¼ hi;xiðF1Þhi;xiðF2Þ=Z2

; ðA3Þ

where Z2 is a normalization constant. Although this
approximation has some undesirable properties (such as
making the marginal distribution more peaked if the same
fixation is made repeatedly), it provides a simple
mechanism for combining histogram evidence from
multiple, distinct fixations.

RDE map

The local uncertainty strategy posits that human subjects
plan their next fixation to a location of maximum local
uncertainty in the image. Because our edgelet model
explicitly represents orientation uncertainty only along the
silhouette border, we must extrapolate this representation
of uncertainty to all possible locations in the image. We call
this extrapolation the RDE map.

The RDE map quantifies the amount of uncertainty at
each location in the image, given the resolution falloff
relative to the current fixation. The RDE value at pixel i is
the sum of entropies corresponding to all edgelets within
radius r(Ei(F)) of pixel i and is equal to 0 if there are no
edgelets within this radius. In other words, the RDE is

defined at every pixel location i (given fixation F) as
follows:

RDEi ¼ ~
jZ all edgelet locations within radius rðEiðFÞÞ of i

Hj: ðA4Þ

Here, Hj is the entropy of edgelet j; that is,

Hj ¼ j~
8

z¼1

Pðxj ¼ zÞlogPðxj ¼ zÞ; ðA5Þ

where we omit the explicit conditioning of posterior
probabilities P(xj) on histogram data (as in Equations A2
and A3) for simplicity.

Future work will build the image representation based on
a retinotopic grid of V1-like filters, rather than using the
simple edgelet-based representation, which, for simplicity,
assumes exact prior knowledge of edge positions but no
prior knowledge of edge orientations. In this case, the RDE
map will be a more fundamental construct that is tied to our
uncertainty across the entire image, not only along the
silhouette border.

Fixation prediction strategies

We define two possible strategies for predicting eye
movements based on our probabilistic model: one global
and one local.

Maximize information (global)

The global strategy predicts the next fixation location to
be the one that maximizes information (i.e., reduces global
uncertainty). This strategy evaluates fixations to every
possible location in the image and then chooses the fixation
location that minimizes the total edgelet entropy as the
prediction. More precisely, choose fixation location F to
minimize the total entropy of all n edgelets:

Htot ¼~
n

i¼1

Hi: ðA6Þ

Of course, this strategy is biologically implausible
because it assumes full knowledge of high-resolution (i.e.,
foveal) image information everywhere in the image! The
visual system would, instead, need to compute the
expected information gain through the use of priors or
heuristics.

Local uncertainty

The local uncertainty model predicts the next fixation
location to be the location of maximal local uncertainty, as

Figure A1. Orientation pooling depends on eccentricity. The size
of a pooling neighborhood r(E) depends on the eccentricity E or
distance from the current fixation. The left and right panels show
local orientation histograms at the same location, for two different
fixations.
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defined by the RDE map. In other words, choose fixation
location F to be the pixel location i that is the maximum
of RDEi. Because the RDE map is updated with each new
fixation, it is straightforward in determining its maximum,
and thus, this strategy could be implemented easily in the
human visual system.

Acknowledgments

This research was supported by grants from Smith–
Kettlewell and Ruth L. Kirchstein NRSA (#EY 14536-02)
to L.W.R.; Air Force (#FA9550-05-1-0151) and NSF
(#0347051) to P.V.; and NIDRR (#H133G030080), NSF
(#IIS0415310), and NIH (#EY015187-01A2) to J.C.

Commercial relationships: none.
Corresponding author: Laura Walker Renninger.
Email: laura@ski.org.
Address: The Smith–Kettlewell Eye Research Institute,
2318 Fillmore Street, San Francisco, CA 94115, USA.

References

Araujo, C., Kowler, E., & Pavel, M. (2001). Eye move-
ments during visual search: The costs of choosing the
optimal path. Vision Research, 41, 3613–3625.
[PubMed]

Bahill, A. T., Adler, D., & Stark, L. (1975). Most
naturally occurring human saccades have magnitudes
of 15 degrees or less. Investigative Ophthalmology,
14, 468–469. [PubMed]

Brainard, D. H. (1997). The psychophysics toolbox.
Spatial Vision, 2, 433–436. [PubMed]

Carpenter, R. H. S. (1988). Movements of the eyes (2nd ed.).
London: Pion.

Caspi, A., Beutter, B. R., & Eckstein, M. P. (2004). The
time course of visual information accrual guiding eye
movement decisions. Proceedings of the National
Academy of Sciences of the United States of America,
101, 13086–13090. [PubMed] [Article]

Dorris, M. C., Klein, R. M., Everling, S., & Munoz, D. P.
(2002). Contribution of the primate superior collicu-
lus to inhibition of return. Journal of Cognitive
Neuroscience, 14, 1256–1263. [PubMed]

Geman, D., & Jedynak, B. (1996). An active testing model
for tracking roads from satellite images. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence, 18, 1–14.

Hamker, F. H. (2003). The reentry hypothesis: Linking
eye movements to visual perception. Journal of

Vision, 3(11):14, 808–816, http://journalofvision.org/
3/11/14/, doi:10.1167/3.11.14. [PubMed] [Article]

Hayhoe, M., & Ballard, D. (2005). Eye movements in
natural behavior. Trends in Cognitive Sciences, 9,
188–194. [PubMed]

Hayhoe, M. M., Shrivastava, A., Mruczek, R., & Pelz, J. B.
(2003). Visual memory and motor planning in a
natural task. Journal of Vision, 3(1):6, 49–63, http://
journalofvision.org/3/1/6/, doi:10.1167/3.1.6.
[PubMed] [Article]

Itti, L., & Baldi, P. (2005). A principled approach to
detecting surprising events in video. Proceedings of
the 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR ’05),
1, 631–637.

Itti, L., & Koch, C. (2000). A saliency-based search
mechanism for overt and covert shifts of visual
attention. Vision Research, 40, 1489–1506.
[PubMed]

Land, M., Mennie, N., & Rusted, J. (1999) The roles of
vision and eye movements in the control of activities
of daily living. Perception, 28, 1311–1328.
[PubMed]

Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian
inference in the visual cortex. Journal of the Optical
Society of America A, Optics, Image Science, and
Vision, 20, 1434–1448. [PubMed]

Lee, T. S., & Yu, S. (2000). An information-theoretic
framework for understanding saccadic eye move-
ments. Advances in Neural Information Processing
Systems, 12, 834–840. [Article]

Legge, G. E., Hooven, T. A., Klitz, T. S., Stephen
Mansfield, J. S., & Tjan, B. S. (2002). Mr. Chips
2002: New insights from an ideal-observer model of
reading. Vision Research, 42, 2219–2234. [PubMed]

Legge, G. E., Klitz, T. S., & Tjan, B. S. (1997). Mr.
Chips: An ideal-observer model of reading. Psycho-
logical Review, 104, 524–553. [PubMed]

Levi, D. M., Klein, S. A., & Aitsebaomo, A. P. (1985).
Vernier acuity, crowding and cortical magnification.
Vision Research, 25, 963–977. [PubMed]

McPeek, R. M., Skavenski, A. A., & Nakayama, K.
(2000). Concurrent processing of saccades in visual
search. Vision Research, 40, 2499–2516. [PubMed]

Melcher, D., & Kowler, E. (1999). Shapes, surfaces and
saccades. Vision Research, 39, 2929–2946. [PubMed]

Najemnik, J., & Geisler, W. S. (2005). Optimal eye
movement strategies in visual search. Nature, 434,
387–391. [PubMed]

Olzak, L. A., & Thomas, J. P. (1992). Configural effects
constrain Fourier models of pattern discrimination.
Vision Research, 32, 1885–1898. [PubMed]

Journal of Vision (2007) 7(3):6, 1–17 Renninger, Verghese, & Coughlan 16

Downloaded from jov.arvojournals.org on 04/24/2024

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11718799&query_hl=4&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1132942&query_hl=7&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9176952&query_hl=8&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15326284&query_hl=12&itool=pubmed_docsum
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=15326284
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12495530&query_hl=13&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14765963&query_hl=13&itool=pubmed_docsum
http://www.journalofvision.org/3/11/14/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15808501&query_hl=15&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12678625&query_hl=18&itool=pubmed_docsum
http://www.journalofvision.org/3/1/6/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10788654&query_hl=21&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10755142&query_hl=23&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12868647&query_hl=25&itool=pubmed_docsum
http://books.nips.cc/papers/files/nips12/0834.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12207981&query_hl=29&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=9243963&query_hl=29&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=4049746&query_hl=30&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10915889&query_hl=31&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10492819&query_hl=33&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15772663&query_hl=34&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1287986&query_hl=35&itool=pubmed_docsum


Peters, R. J., Iyer, A., Itti, L., & Koch, C. (2005).
Components of bottom–up gaze allocation in natural
images. Vision Research, 45, 2397–2416. [PubMed]

Posner, M. I., & Cohen, Y. (1984). In H. Boumas &
Y. Bouwhuis (Eds.), Attention and performance
(vol. X, pp. 531–556). Erlbaum: Hillsdale, NJ.

Raj, R., Geisler, W. S., Frazor, R. A., & Bovik, A. C.
(2005). Contrast statistics for foveated visual
systems: Fixation selection by minimizing con-
trast entropy. Journal of the Optical Society of
America A, Optics, Image Science, and Vision, 22,
2039–2049. [PubMed]

Rao, R. P., Zelinsky, G. J., Hayhoe, M. M., & Ballard, D. H.
(2002). Eye movements in iconic visual search. Vision
Research, 42, 1447–1463. [PubMed]

Reinagel, P., & Zador, A. M. (1999). Natural scene
statistics at the centre of gaze. Network, 10, 341–350.
[PubMed]

Renninger, L. W., Coughlan, J., Verghese, P., & Malik, J.
(2005). An information maximization model of
eye movements. Advances in Neural Information
Processing Systems, 17, 1121–1128. [PubMed]
[Article]

Renninger, L. W., Verghese, P., & Coughlan, J. (2005a).
Eye movements can be understood within an infor-
mation theoretic framework. Computational & Sys-
tems Neuroscience (Cosyne05), Salt Lake City, UT.

Renninger, L. W., Verghese, P., & Coughlan, J. (2005b).
Modeling eye movements in a shape discrimination task

[Abstract]. Journal of Vision, 5(8):921, 921a, http://
journalofvision.org/5/8/921/, doi:10.1167/5.8.921.

Renninger, L. W., Verghese, P., & Coughlan, J. (2006).
Do eye movements incorporate knowledge of part
structure? [Abstract]. Journal of Vision, 6(6):482,
482a, http://journalofvision.org/6/6/482/, doi:10.1167/
6.6.482.

Shadlen, M. N., & Newsome, W. T. (2001). Neural basis
of a perceptual decision in the parietal cortex (area
LIP) of the rhesus monkey. Journal of Neurophysiol-
ogy, 86, 1916–1936. [PubMed] [Article]

Snodgrass, J. G., & Vanderwart, M. (1980). A stand-
ardized set of 260 pictures: Norms for name
agreement, image agreement, familiarity, and visual
complexity. Journal of Experimental Psychology:
Human Learning and Memory, 6, 174–215.
[PubMed]

Tatler, B. W., Baddeley, R. J., & Gilchrist, I. D. (2005).
Visual determinants of eye movements: Effects of
scale and time. Vision Research, 45, 643–659.
[PubMed]

Vishwanath, D., & Kowler, E. (2003). Localization of
shapes: Eye movements and perception compared.
Vision Research, 43, 1637–1653. [PubMed]

White, J. M., Levi, D. M., & Aitsebaomo, A. P. (1992).
Spatial localization without visual references. Vision
Research, 32, 513–526. [PubMed]

Yarbus, A. L. (1967). Eye movements and vision. New
York: Plenum Press.

Journal of Vision (2007) 7(3):6, 1–17 Renninger, Verghese, & Coughlan 17

Downloaded from jov.arvojournals.org on 04/24/2024

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15935435&query_hl=38&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16277275&query_hl=39&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12044751&query_hl=40&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=10695763&query_hl=41&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=16175670&query_hl=45&itool=pubmed_docsum
http://books.nips.cc/papers/files/nips17/NIPS2004_0869.pdf
http://www.journalofvision.org/5/8/921/
http://www.journalofvision.org/6/6/482/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=11600651&query_hl=54&itool=pubmed_docsum
http://jn.physiology.org/cgi/content/full/86/4/1916
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=7373248&query_hl=57&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=15621181&query_hl=58&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=12798146&query_hl=60&itool=pubmed_docsum
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=1604838&query_hl=61&itool=pubmed_docsum

